The projections of a convex body

N.Dergiades G.Tsintsifas

Abstract

In this paper we present a new proof to the remarcable inequality of LoomisWhitney see (2),(3). The generaliged inequality is the following. Let $O . e_{1} e_{2} \ldots . e_{n}$ be an orthonormal Coordinate system in E^{n} and $F_{e_{j_{1} j_{2} \ldots j_{k}}}$ the projections of a convex body F on the k-plane $\left(e_{j_{1}} e_{j_{2}} \ldots e_{j_{k}}\right)$. By $$
\prod V\left(F_{e_{j_{1} j_{2} . . j_{k}}}\right)
$$ we denote the product of the volumes of the k-projections of the body F on the $\binom{n}{k}$ coordinate planes. We will prove that: $$
V(F) \leq\left[\prod V\left(F_{e_{j_{1} j_{2} . j_{l}}}\right)\right]^{\frac{n}{l\binom{n}{l}}} \leq\left[\prod V\left(F_{e_{j_{1} j_{2} . . j_{k}}}\right)\right]^{\frac{n}{k\binom{n}{l}}}
$$ for $i \leq k \leq l \leq n-1$.

\section*{Introduction}

Let F be a convex body in the Euclidean space E^{n} and $O . e_{1} e_{2} \ldots e_{n}$ an orthonormal Cartesian system. We denote by v the unit cube and $V_{1}(F, v)=$ $V(F, F, . . F, v)$ the mixed volume of F and v . The cross sectional measure of F in the direction u is given by

$$
\sigma_{u}=n V_{1}(F, v)=n V(F, F, \ldots F, v)
$$

see [1]. It is well known that:
$V(F, F \ldots F, v)=V\left(F, F, \ldots F, e_{1}\right)+V\left(F, f, \ldots F, e_{2}\right)+\ldots+V\left(F, F, \ldots F, e_{n}\right)=\frac{\sum_{1}^{n} \sigma_{e_{i}}}{n}$
From the Brunn MInkowski theorem follows:

$$
V(F)^{n-1} V(v)=V(F, F, \ldots F)^{n-1} V(v) \leq V(F, F, \ldots F, v)^{n}
$$

so we have:

$$
V(F)^{n-1} \leq\left[\frac{\sum_{1}^{n} \sigma_{e_{i}}}{n}\right]^{n}
$$

but from M.A-G.A inequality we have:

$$
\prod \sigma_{e_{i}} \leq\left[\frac{\sum_{1}^{n} \sigma_{e_{i}}}{n}\right]^{n}
$$

so the question is where is the position of the product $\prod_{1}^{n} \sigma_{e_{i}}$ relative to the $V(F)^{n-1}$?
By the present paper we give the answer. We will prove that:

$$
V(F)^{n-1} \leq \prod \sigma_{e_{i}}
$$

and in our formulation, the below
theorem 1

$$
V(F)^{n-1} \leq \prod V\left(F_{e_{j_{1} j_{2} . . j_{n-1}}}\right)
$$

Additionally, from the above we will prove that:

Theorem 2

$$
V(F) \leq\left[\prod V\left(F_{e_{j_{1} j_{2} . j_{l}}}\right)\right]^{\left.\frac{n}{l(n}{ }_{l}^{n}\right)} \leq\left[\prod V\left(F_{e_{j_{1} j_{2} . j_{k}}}\right)\right]^{\frac{n}{k\binom{n}{l}}}
$$

for $i \leq k \leq l \leq n-1$ and by $\Pi V\left(F_{e_{j_{1} j_{2} . . j_{p}}}\right)$ we denote the product of the volumes of the $\binom{n}{p}$ projections of F on the p coordinate planes $O \cdot e_{j_{1}} e_{j_{2}} \ldots e_{j_{p}}$. Proof of the theorem 1.
For the simplicity we lightly change the formulation, so we will prove:
Let F be a convex body in E^{n} and $\left(O x_{1} x_{2} \ldots x_{n}\right),\left(L_{1} L_{2} \ldots . L_{n}\right)$ the Cartesian coordinates system and the Cartesian planes respectively. We denote by $F_{1}, F_{2}, \ldots . F_{n}$ the projections of F to the Cartesian planes. We will prove that:

$$
[V(F)]^{n-1} \leq V\left(F_{1}\right) \cdot V\left(F_{2}\right) \cdots V\left(F_{n}\right)
$$

where $V(K)$ is the volume of the body K.
We consider $p+1$ hyperplanes ($n-1$)linear spaces) of equal breadth parallel to L_{1}. The body is partitioned into p slices $K_{1}, K_{2}, \ldots . K_{p}$ of breadth d. We
also denote by $A_{1}, A_{2}, \ldots A_{p}$ the middle intersections of the slices $K_{1}, K_{2}, \ldots . K_{p}$ with planes parallel to L_{1}. Let

$$
V_{i}^{\prime}=d \cdot V\left(A_{i}\right), \quad V^{\prime}=\sum_{i=1}^{p} V_{i}^{\prime}
$$

We will have:

$$
V(F)=\lim _{d \rightarrow 0 p \rightarrow \infty} V^{\prime}
$$

The A_{i} are convex body of $n-1$ dimension so following the method of the mathematical induction we can suppose that the theorem is correct (for the $\left.A_{i}, i=1,2, \ldots p\right)$. Suppose now that $x_{2 i}, x_{3 i}, \ldots x_{n i}$ are the volumes of the projections of the A_{i} on L_{i} for $i=2,3, \ldots . n$.
According the supposition of the induction

$$
\begin{equation*}
\left[V\left(A_{i}\right)\right]^{n-2} \leq x_{2 i} x_{3 i} \ldots x_{n i}=S_{i} \tag{1}
\end{equation*}
$$

for $i=2,3, \ldots . n$
Also

$$
\begin{equation*}
V\left(A_{i}\right) \leq V_{1}(F) \tag{2}
\end{equation*}
$$

From Holder's inequality follows:

$$
\left[\left(\Pi_{i=2}^{n} x_{i 1}\right)^{\frac{1}{n-1}}+\left(\Pi_{i=2}^{n} x_{i 2}^{\frac{1}{n-1}}+\ldots .\left(\Pi_{i=2}^{n} x_{i p}\right)^{\frac{1}{n-1}}\right]^{n-1} \leq\left(\sum_{i=1}^{p} x_{2 i}\right)\left(\sum_{i=1}^{p} x_{3 i}\right) \ldots .\left(\sum_{i=1}^{p} x_{n i}\right)\right.
$$

or

$$
\begin{gathered}
d^{n-1}\left[\left(\Pi_{i=2}^{n} V\left(F_{1}\right) x_{i 1}\right)^{\frac{1}{n-1}}+\left(\prod_{i=2}^{n} V\left(F_{1}\right) x_{i 2}^{\frac{1}{n-1}}+. .\left(\prod_{i=2}^{n} V\left(F_{1}\right) x_{i p}\right)^{\frac{1}{n-1}}\right]^{n-1}\right. \\
\leq V\left(F_{1}\right) d^{n-1}\left(\sum_{i=1}^{p} x_{2 i}\right)\left(\sum_{i=1}^{p} x_{3 i}\right) . .\left(\sum_{i=1}^{p} x_{n i}\right)
\end{gathered}
$$

and from (1),(2) arises:

$$
\left[d V\left(A_{1}\right)+d V\left(A_{2}\right)+. .+d V\left(A_{p}\right)\right]^{n-1} \leq V\left(F_{1}\right)\left(\sum_{i=1}^{p} d x_{2 i}\right)\left(\sum_{i=1}^{p} d x_{3 i}\right) . .\left(\sum_{i=1}^{p} d x_{n i}\right)
$$

Therefore, for $d \rightarrow 0, \quad p \rightarrow \infty$ we finally take:

$$
[V(F)]^{n-1} \leq V\left(F_{1}\right) \cdot V\left(F_{2}\right) \cdots V\left(F_{n}\right)
$$

Proof of the Theorem 2

First we prove that:

$$
V(F) \leq\left[\prod V\left(F_{e_{j_{1} j_{2} . . j_{k}}}\right)\right]^{\frac{n}{k\binom{n}{k}}}
$$

for $1 \leq k \leq n-1$.
From the Theorem 1 in E^{k+1} holds:

$$
\begin{equation*}
V^{k}\left(F_{e_{j_{1} j_{2} . \cdot j_{k+1}}}\right) \leq \prod V\left(F_{e_{j_{1} j_{2} . . j_{k}}}\right) \tag{3}
\end{equation*}
$$

In the E^{n} the number of the planes $e_{j_{1}} e_{j_{2}} \ldots e_{j_{k+1}}$ are $\binom{n}{k+1}$. In every inequality from the above (1) there are $k+1$ equal terms to $V\left(F_{e_{j_{1} j_{2} . . j_{k}}}\right)$, therefore

$$
\frac{(k+1)\binom{n}{k+1}}{\binom{n}{k}}=n-k
$$

non equal terms.
So, multiplying the above $\binom{n}{k+1}$ inequalities, we take:

$$
\begin{equation*}
\prod V\left(F_{e_{j_{1} j_{2} \ldots j_{k+1}}}\right)^{\frac{k}{n-k}} \leq \prod V\left(F_{e_{j_{1} j_{2} . . j_{k}}}\right) \tag{4}
\end{equation*}
$$

The above argument also ensures:

$$
\prod V\left(F_{e_{j_{1} j_{2} \cdot j_{k+2}}}\right)^{\frac{k+1}{n-k-1}} \leq \prod V\left(F_{e_{j_{1} j_{2} \cdot j_{k+1}}}\right)
$$

and an easy induction leads as finally to:

$$
[V(F)]^{\frac{k(k+1) \ldots(n-1)}{1.2 \cdot 3 . .(n-k)}} \leq \prod V\left(F_{e_{j_{1} j_{2} . . j_{k}}}\right)
$$

that is:

$$
V(F) \leq\left[\prod V\left(F_{e_{j_{1} j_{2} . . j_{k}}}\right)\right]^{\frac{n}{k\binom{n}{k}}}
$$

Let now $k \leq l$. From (4) we take:

$$
\Pi V\left(F_{e_{e_{1}, j_{2}, j_{k+1}}}\right)^{\frac{k}{n-k}} \leq \Pi V\left(F_{e_{\rho_{1} j_{2}, j_{k}}}\right)
$$

or

$$
\prod V\left(F_{e_{j_{1} j_{2} \cdot j_{k+2}}}\right)^{\frac{k(k+1)}{(n-k)(n-k-1)}} \leq \prod V\left(F_{e_{j_{1} j_{2} . j_{k+1}}}\right)^{\frac{k}{n-k}}
$$

We continue this way and we take:

$$
\prod V\left(F_{e_{j_{1} j_{2}, j_{l}}}\right)^{q} \leq \prod V\left(F_{e_{j_{1} j_{2} . j_{k}}}\right)
$$

where

$$
q=\frac{k(k+1) \ldots .(l-1)}{(n-k) \ldots .[n-(l-1)]}=\frac{\frac{n}{\bar{l}\binom{n}{l}}}{\frac{n}{k\binom{n}{k}}}
$$

Therefore it follows:

$$
V(F) \leq\left[\prod V\left(F_{e_{j_{1} j_{2} . j_{l}}}\right)\right]^{\frac{n}{l\binom{n}{l}}} \leq\left[\prod V\left(F_{e_{j_{1} j_{2} . . j_{k}}}\right)\right]^{\frac{n}{k\binom{n}{l}}}
$$

References

1. T.Bonnesen and W.Fenchel, Theory of Convex Bodies, BCS Associates, Moscow, Idaho U.S.A 1987.
2. Yu.D.Burago-V.A.Zalgaller, Geometric Inequalities, Springer-Verlag.
3. H.Hadwiger, Vorlesungen uber Innhalt, Oberflache und Isoperimetrie, Springer-Verlag
