Lattice point covering property of the triangle.

G. A. Tsintsifas Theassaloniki Greece GR

1. Introduction

Ivan Niven and H.S.Zackkerman in [1] discussed the problem of the lattice point covering of the triangle. In this note we are working in the same problem, following another formulation and we obtain a remarkable Geometric solution.

2. Theorem.

Let T be a triangle in the lattice plane and suppose that the minimum inscribed square has a side bigger or equal to 1 . Then T has the lattice point covering property.

Proof

It is easy to see that there are at most three squares inscribed in the triangle T, each of every side. An elementary calculation shows that the smaller inscribed square corresponds to the biggest side.

Indeed. The square $E F Z H$ corresponds to the side $B C=a$. From the similar triangles $F A Z, C A B$, and $B Z H, B A D$ we have:
$\frac{A I}{A D}=\frac{Z F}{B C}$ or $\frac{h_{a}-x}{h_{a}}=\frac{x}{a}$, that is:

$$
\begin{equation*}
x=\frac{a h_{a}}{a+h_{a}} \tag{1}
\end{equation*}
$$

Where x is the side of the square and h_{a} the altitude from A.
We assume now $a \geq b \geq c$. We easily find

$$
\begin{equation*}
a+h_{a} \geq b+h_{b} \geq c+h_{c} \tag{2}
\end{equation*}
$$

because of

$$
a+\frac{2 F}{a} \geq b+\frac{2 F}{b}
$$

Figure 1:
where F denotes the area of the triangle $A B C$, or,

$$
(a-b)(a b-2 F) \geq 0
$$

So, (2) holds.
From (1),(2) we understand that the smaller square corresponds to the biggest side.
Let now $T=A B C$ be a triangle in the lattice plane $(O v, O u)$. We consider the parallel lines x_{a}, x_{b}, x_{c} through A, B, C to $O v$. One from these must intersect the opposite side. We can suppose, without any restriction, that x_{a} intersects $B C$. We consider the inscribed square on $B C$. This square (L) has sides bigger or equal to 1 . That is, from (1)

$$
\frac{a h_{a}}{a+h_{a}} \geq 1
$$

Let $P=x_{a} \cap B C$. Obviously $h_{a} \geq 1$, therefore we can find points $M \in A C$, such that the parallel straight segments to $A P, M N$ and $S Q$ have length equal to 1 . Let v_{1}, v_{2} the distances of B, C to $A P$ and d_{1}, d_{2} the breadths of the strips $M N, A P$ and $S Q, A P$. From the similar triangles

Figure 2:
$M B N, P B A$ we have:

$$
\frac{M N}{A P}=\frac{v_{1}-d_{1}}{v_{1}} \text { or } \frac{1}{p}=\frac{v_{1}-d_{1}}{v_{1}} \text { or } d_{1}=v_{1}-\frac{v_{1}}{p}
$$

where $A P=p$. Similarly we have

$$
d_{2}=v_{2}-\frac{v_{2}}{p}
$$

or,

$$
\begin{equation*}
d_{1}+d_{2}=v_{1}+v_{2}-\frac{v_{1}+v_{2}}{p} \tag{3}
\end{equation*}
$$

We also have.

$$
\begin{equation*}
\left(v_{1}+v_{2}\right) p=2 F \tag{4}
\end{equation*}
$$

where F denotes the area of $A B C$ triangle. From (3),(4) we have:

$$
\begin{equation*}
d_{1}+d_{2}=\frac{(p-1)}{p} \frac{2 F}{p}=\frac{(p-1)}{p} \frac{a h_{a}}{p} \geq \frac{p-1}{p} a \tag{5}
\end{equation*}
$$

because $p \geq h_{a}$. From (5) we have $a^{2} p+a p h_{a} \geq a^{2} h_{a}+a p h_{a}$ or

$$
\begin{equation*}
\frac{a p}{a+p} \geq \frac{a h_{a}}{a+h_{a}} \geq 1 \tag{6}
\end{equation*}
$$

From the last relation (6) follows

$$
\frac{p-1}{p} a \geq 1
$$

that is $d_{1}+d_{2} \geq 1$.
So the parallelogramme of side $M N=S Q=1$, has the breadth of the strip $M N, S Q$ which is at least 1 . Therefore there is a lattice line parallel to $O v$ intersecting the parallelogramme $M N Q S$ in a straight line segment of a length at least 1 . So there is a lattice point belonging to the interior of the above parallelogramme.

Reference.

1. Ivan Niven and H.S. Zuckerman, Lattice point covering by plane figures, Amer. Math. Monthly, 74, 1967, p. 353-362. 2. The Geometry of Nambers, C.D.Olds, Anneli Lax, Giuliana Davidof, The Mathematical Association of America.
