The maximal inscribed and the minimal circumscribed ellipse for a centrally symmetric convex figure.

G. A. Tsintsifas
Theassaloniki Greece

Introduction

An interesting problem in the theory of convex sets is the approximation of the convex sets via regular, with well known properties, figures. John's theorem asserts us that in every centrosymmetric figure F there is an inscribed ellipse E and a circumscribed ellipse $\sqrt{2} E$ including F. In this note we study the maximal inscribed and the minimal circumscribed ellipse of a centrally symmetrc convex figure F and we prove two theorems between the area and the remarkable elements of the figures.

1.The maximal inscribed ellipse

Let $A A^{\prime}$ be a diameter of the centrosymmetric figure F and O its center. We consider an orthogonal Cartesian coordinates system with origin the point O. The $O x$ axis coincides with $O A$ and we put:

$$
A(p, 0), A^{\prime}(-p, 0), B(0, q), B^{\prime}(0,-q),
$$

where $\frac{q}{p} \leq 1$ and B, B^{\prime} the points of intersection of the perimeter of F with the vertical $y O y^{\prime}$ axis.
The smaller centrosymmetric convex figure through the points $A, A^{\prime}, B, B^{\prime}$ is the rhombus $\mathrm{ABA}^{\prime} \mathrm{B}^{\prime}$, hence the smaller inscribed ellipse E_{i} in F , is the inscribed ellipse E_{1} in the rhombus $\mathrm{ABA}^{\prime} \mathrm{B}^{\prime}$. We consider the affine transformation f , transforming the rhombus $\mathrm{ABA} \mathrm{B}^{\prime}$ ' to the square $A B_{1} A^{\prime} B_{1}^{\prime}$ and the
ellipse E_{1} to the circle E_{1}^{\prime}. The affinity preserves the ratio of areas, therefore we will have:

$$
\begin{equation*}
\frac{\left[E_{1}\right]}{\left[A B A^{\prime} B^{\prime}\right]}=\frac{\left[E_{1}^{\prime}\right]}{\left[A B_{1} A^{\prime} B_{1}^{\prime}\right]}=\frac{\pi p^{2}}{4 p^{2}}=\frac{\pi}{4} \tag{1}
\end{equation*}
$$

The area of the figure Q is denoted by $[\mathrm{Q}]$.

$$
\begin{equation*}
\frac{\left[E_{1}\right]}{\left[A B A^{\prime} B^{\prime}\right]}=\frac{\left[E_{1}\right]}{2 p q} \tag{2}
\end{equation*}
$$

From (1),(2) follows that

$$
E_{1}=\frac{\pi p q}{2}
$$

The maximum centrosymmetric figure through the points $A, A^{\prime}, B, B^{\prime}$ is the orthogonal parallelogramme T with the sides on the perpendiculars at the points A, A^{\prime} to the axes Oy and at the points B, B ' to the Ox axes. The inscribed ellipse in T has area $\pi p q$, we conclude

Theorem 1

The maximum inscribed ellipse E_{i} in a centrally symmetric convex figure F completes the inequality.

$$
\frac{\pi p q}{2} \leq\left[E_{i}\right] \leq \pi p q
$$

The minimal circumscribed ellipse.

As in the first part, we consider a Cartesian system with origin the center O of the centrally symmetric figure F.
Let it be $A A^{\prime}$ a diameter and we put:

$$
A(p, 0), A^{\prime}(-p, 0)
$$

Let now, $\epsilon, \epsilon^{\prime}$ the parallel to $O x$ axis support lines of F and B, B^{\prime} their intersections with the $O y$ axis. We put $B(0, q)$ and $B^{\prime}(0,-q)$. We also suppose that our choice is so that the ratio p / q is minimum.
(a). We assume that $\frac{q}{p}<\frac{\sqrt{2}}{2}$.

The biggest centrally symmetric figure F is included in the convex region $S=A K B^{\prime} L A^{\prime} M B N$ bounded by the lines $\epsilon, \epsilon^{\prime}$ and two circular arcs
$N K, L M$, having the point O as a center and radius p.
The point N has coordinates $\left(\sqrt{p^{2}-q^{2}}, q\right)$ and the equation of E_{2} is:

$$
E_{2}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 .
$$

The minimum ellipse E_{2} contains the points N, K, L, M, so we have:

$$
\frac{p^{2}-q^{2}}{a^{2}}+\frac{a^{2}}{b^{2}}=1
$$

or,

$$
\begin{equation*}
b^{2}=\frac{q^{2} a^{2}}{a^{2}-\left(p^{2}-q^{2}\right.} . \tag{3}
\end{equation*}
$$

The area of E_{2} is: $[E]^{2}=\pi^{2} a^{2} b^{2}$.
Hence, using (3) we take:

$$
\begin{equation*}
[E]^{2}=\pi^{2} \frac{q^{2} a^{4}}{a^{2}-\left(p^{2}-q^{2}\right.} . \tag{4}
\end{equation*}
$$

From the formula (5) we easily see that $\left[E_{2}\right]^{2}$ is continous with respect a^{2}, $\left(a^{2}>p^{2}-q^{2}\right)$.
We find the minimum of $\left[E_{2}\right]$ using elementary theorems of calculus. That is from (5) we have:

$$
\pi^{2} q^{2} a^{4}-\left[E_{2}\right]^{2} a^{2}+\left[E_{2}\right]^{2}\left(p^{2}-q^{2}\right)=0
$$

Thus, setting

$$
\Delta=\left[E_{2}\right]^{4}-4 \pi^{2} q^{2}\left(p^{2}-q^{2}\right) \geq 0
$$

we have:

$$
\begin{equation*}
\left[E_{2}\right] \geq 2 \pi q \sqrt{p^{2}-q^{2}} \tag{5}
\end{equation*}
$$

The above minimum is taken for

$$
a=\sqrt{2\left(p^{2}-q^{2}\right)} .
$$

Assuming now that, $a>p$ or equivalently $\frac{q}{p}<\frac{\sqrt{2}}{2}$, we conclude that there is an ellipse E_{2} with area at most $2 \pi q \sqrt{p^{2}-q^{2}}$ including F.

For the case $\frac{p}{q} \geq \frac{\sqrt{2}}{2}$, we see that: $a \leq p$. That is the ellipse E_{2} does not contain S. Therefore taking in mind the continuity of $\left[E_{2}\right]$, see (5), we
conclude that every ellipse including S has at least area than the crcle (O, p). Hence we end at the following
Theorem 2
The minimum ellipse E_{s} circumscribed about the centally symmetric convex figure F has area:

1. for $\frac{q}{p} \leq \frac{\sqrt{2}}{2}$

$$
\left[E_{s}\right] \geq 2 \pi q \sqrt{p^{2}-q^{2}}
$$

2. for $\frac{q}{p} \geq \frac{\sqrt{2}}{2}$

$$
\left[E_{s}\right] \geq \pi p^{2}
$$

References

1. C. Smith, Conic Sections, Mc Millan, 1965.
2. I. M. Yaglom and V. G. Boltianskii, Convex Figures, Holt Rinechart and Winston, 1961.
