Lattice point covering property of the ellipse.
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Ivan Niven and H.S.Zukkerman in [1] proved that the ellipse with axes
2a, 2b has the lattice point covering property if and only if 4a%b* > a? + b2.
In this note we will give another formulation and a remarkable simple proof
of the above theorem.

1. Lemma.

Let (¢) be an ellipse with axes 2a, 2b and center K. A right angle FKF is
moving around K, E € (¢) and F' € (c¢).Let M the foot of the center K on
EF. The locus of the point M is the inscribed circle of the inscribed square
in the ellipse (c),see[2].

Proof.
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It is very simple problem to calculate the side of the inscribed square in (c).

The side of the square is
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so the iscribed circle (¢) in the above square has as radius
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It is elementary to prove the contrary, that is if E'F” is a chord of (¢) touching

on (q) then the angle E'K'F’ is a right angle.

We also can prove that
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We know that:
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2. Theorem
The ellipse (c) has the lattice point property if and only if includes a square
of side 1.
Proof.
The inscribed square in (c) is the max. included square and has as a side
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S0 we have:
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Let (q) be the inscribed circle in the inscribed square and Ov, Ou the axes
of the lattice plane. We consider n1/, ww’ the parallel to Ov tangent lines to
(q). The breadh of the strip 77, ww' is at least 1. So, there is a parallel line,
to Ov of the lattice plane, S\S’; intersecting the ellipse (¢) at the points T',P
interior of the strip. According our lemma T7'P" > 1, see fig. 2, therefore
TP >T'P > 1 and so there is a lattice point on the straight line segment
TP.
Also, it holds the contrary, that is, unter the assumption

2ab
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the ellipse with axes 2a,2b does not have the lattice point covering prop-

erty. That is very simple. We just put the max. inscribed square of the
ellipse inside and with parallel sides in a lattice square.
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Figure 2:
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