Lattice point covering property of the ellipse.

G. A. Tsintsifas
Theassaloniki Greece GR

Ivan Niven and H.S.Zukkerman in [1] proved that the ellipse with axes $2 a, 2 b$ has the lattice point covering property if and only if $4 a^{2} b^{2} \geq a^{2}+b^{2}$. In this note we will give another formulation and a remarkable simple proof of the above theorem.

1. Lemma.

Let (c) be an ellipse with axes $2 a, 2 b$ and center K. A right angle $E K F$ is moving around $K, E \in(c)$ and $F \in(c)$.Let M the foot of the center K on $E F$. The locus of the point M is the inscribed circle of the inscribed square in the ellipse (c),see[2].
Proof.

Figure 1:

Let

$$
\frac{1}{K E^{2}}=\frac{1}{r_{1}^{2}}=\frac{\cos ^{2} \theta}{a^{2}}+\frac{\sin ^{2} \theta}{b^{2}}
$$

and

$$
\frac{1}{K F^{2}}=\frac{1}{r_{2}^{2}}=\frac{\cos ^{2}(\theta+\pi / 2)}{a^{2}}+\frac{\sin ^{2}(\theta+\pi / 2)}{b^{2}}=\frac{\sin ^{2} \theta}{a^{2}}+\frac{\cos ^{2} \theta}{b^{2}}
$$

see [2] page 147.
Therefore

$$
\frac{1}{r_{1}^{2}}+\frac{1}{r_{2}^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{a^{2}+b^{2}}{a^{2} b^{2}}
$$

But we know from the elementary Geometry

$$
\frac{1}{r_{1}^{2}}+\frac{1}{r_{2}^{2}}=\frac{1}{K M^{2}}
$$

so, we have:

$$
K M=\frac{a b}{\sqrt{a^{2}+b^{2}}} .
$$

It is very simple problem to calculate the side of the inscribed square in (c). The side of the square is

$$
\frac{2 a b}{\sqrt{a^{2}+b^{2}}}
$$

so the iscribed circle (q) in the above square has as radius

$$
\frac{a b}{\sqrt{a^{2}+b^{2}}}
$$

It is elementary to prove the contrary, that is if $E^{\prime} F^{\prime}$ is a chord of (c) touching on (q) then the angle $E^{\prime} K F^{\prime}$ is a right angle.
We also can prove that

$$
E F \geq \frac{2 a b}{\sqrt{a^{2}+b^{2}}}
$$

We know that:

$$
\left(r_{1}^{2}+r_{2}^{2}\right)\left(\frac{1}{r_{1}^{2}}+\frac{1}{r_{2}^{2}}\right) \geq 4
$$

or,

$$
\left(r_{1}^{2}+r_{2}^{2}\right) \frac{a^{2}+b^{2}}{a^{2} b^{2}} \geq 4
$$

or,

$$
r_{1}^{2}+r_{2}^{2}=E F^{2} \geq \frac{4 a^{2} b^{2}}{a^{2}+b^{2}}
$$

or,

$$
E F \geq \frac{2 a b}{\sqrt{a^{2}+b^{2}}}
$$

2. Theorem

The ellipse (c) has the lattice point property if and only if includes a square of side 1 .
Proof.
The inscribed square in (c) is the max. included square and has as a side

$$
\frac{2 a b}{\sqrt{a^{2}+b^{2}}}
$$

so we have:

$$
\frac{2 a b}{\sqrt{a^{2}+b^{2}}} \geq .1
$$

Let (q) be the inscribed circle in the inscribed square and Ov , Ou the axes of the lattice plane. We consider $\eta \eta^{\prime}, \omega \omega^{\prime}$ the parallel to Ov tangent lines to (q). The breadh of the strip $\eta \eta^{\prime}, \omega \omega^{\prime}$ is at least 1 . So, there is a parallel line, to Ov of the lattice plane, $S S^{\prime}$, intersecting the ellipse (c) at the points T, P interior of the strip. According our lemma $T^{\prime} P^{\prime} \geq 1$, see fig. 2, therefore $T P \geq T^{\prime} P^{\prime} \geq 1$ and so there is a lattice point on the straight line segment $T P$.
Also, it holds the contrary, that is, unter the assumption

$$
\frac{2 a b}{\sqrt{a^{2}+b^{2}}}<1
$$

the ellipse with axes $2 a, 2 b$ does not have the lattice point covering property.That is very simple. We just put the max. inscribed square of the ellipse inside and with parallel sides in a lattice square.

References.

1. Ivan Niven and H.S. Zuckerman, Lattice point covering by plane figures. Amer. Math. Monthly, 74, 1967, p. 353-362.
2. C. Smith, Conic sections, Macmillan 1956.
3. The Geometry of Nambers, C.D.Olds, Anneli Lax, Giuliana Davidof, The Mathematical Association of America.
