The Orthoptic Curve of a convex figure

G.Tsintsifas

1. Introduction

Let F be a convex figure in E^{2} and $K=\vartheta F$ the boundary curve of F. We suppose that K is regular convex curve with positive curvature (rotund) and two points P_{1}, P_{2} of K. The support lines at the points P_{1}, P_{2} are intersecting at the point P. Continuity arguments assure that the point set $\left\{P / \angle P_{1} P P_{2}=\pi / 2\right.$ is a curve denoted by K_{*}.
Definition We will call K_{*}, the Orthoptic curve of the curve K.
If K is the circle (O, R) then K_{*} will be the circle $(O, R \sqrt{2})$. If K is the ellipse $x^{2} / a^{2}+y^{2} / b^{2} / 2=1$ then K_{*} will be concentric circle of radius $\sqrt{a^{2}+b^{2}}$. Here, the main problem for us is to determine the convex curve K supposing that K_{*} is circle, see also [1]. We will also prove the following interesting inequalities.
(a) $\quad A\left(K_{*}\right) \geq 2 A(K)$
(b) $\quad L\left(K_{*}\right) \geq 2 L(K)$.

Where by A we denote the area enclosed by the curves K, K_{*} and L the length.

2. The problem

We suppose that K_{*} is a circle of radius 1 . We will try to determine the curve K.
Let e_{1} the support line at the point $P \in K$ and $p_{1}=p(\theta)$ the support function of K for the e_{1}. It is well known that:

$$
\begin{equation*}
\forall(x, y) \in e_{1}: \quad x \cos \theta+y \sin \theta=p(\theta)=p_{1} \tag{1}
\end{equation*}
$$

see [1].
Let now e_{2} the support line, perpendicular to e_{1}, so that:

$$
\begin{equation*}
\forall(x, y) \in e_{2}: \quad x \cos (\theta+\pi / 2)+y \sin (\theta+\pi / 2)=p(\theta+\pi / 2)=p_{2} \tag{2}
\end{equation*}
$$

From the system of (1) and (2) we can find the coordinates of the point $M=e_{1} \cap e_{2}$. We have:

$$
\begin{equation*}
x=x_{M}=p_{1} \sin \theta+p_{2} \cos \theta, \quad y=y_{M}=p_{1} \cos \theta+p_{2} \sin \theta \tag{3}
\end{equation*}
$$

Easily from (3) we find:

$$
|O M|^{2}=p_{1}^{2}+p_{2}^{2}
$$

or,

$$
\begin{equation*}
p^{2}(\theta)+p^{2}(\theta+\pi / 2)=1 \tag{4}
\end{equation*}
$$

The function $p^{2}(\theta)$ is periodic with period 2π. Assuming that the conditions for the expansion in Fourier series exist, we will have:

$$
\begin{gathered}
p^{2}(\theta)=\frac{1}{2} a_{0}+\sum_{1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right) \\
p^{2}(\theta+\pi / 2)=\frac{1}{2} a_{0}+\sum_{1}^{\infty}\left(d_{n} \cos n \theta+g_{n} \sin n \theta\right)
\end{gathered}
$$

where,

$$
\begin{aligned}
& d_{n}=a_{n} \cos \frac{n \pi}{2}+b_{n} \sin \frac{n \pi}{2} \\
& g_{n}=b_{n} \cos \frac{n \pi}{2}-a_{n} \sin \frac{n \pi}{2}
\end{aligned}
$$

For, $a_{0}=1, \quad a_{n}+d_{n}=0, \quad b_{n}+g_{n}=0, \quad n \geq 1$, we find: $a_{1}=b_{1}=0, a_{3}=b_{3}=0, a_{4}=b_{4}=0, a_{5}=b_{5}=0, a_{7}=b_{7}=0 \quad \ldots$, that is $a_{4 k+i}=b_{4 k+i}=0$ for $i=0,1,3, \quad k$ natural number. We can arbitrarely define $a_{4 k+2}, b_{4 k+2}$. Therefore if the support function is:

$$
p^{2}(\theta)=\frac{1}{2}+\sum_{1}^{\infty}\left[a_{4 k+2} \cos (4 k+2) \theta+b_{4 k+2} \sin (4 k+2) \theta\right]
$$

then we will have:

$$
p^{2}(\theta)+p^{2}(\theta+\pi / 2)=1
$$

An example.
We can take the curve (c) with support function

$$
\begin{equation*}
p(\theta)=\sqrt{\frac{1}{2}+a \cos 2 \theta} \tag{5}
\end{equation*}
$$

we see that,

$$
p^{2}(\theta)+p^{2}(\theta+\pi / 1)=1
$$

The curvature of (c) is:

$$
\frac{1}{k(\theta)}=\rho(\theta)=p(\theta)+\ddot{p}(\theta)
$$

or

$$
\rho(\theta)=\frac{1 / 4-a^{2}}{[1 / 2+a \cos 2 \theta]^{3 / 2}} .
$$

For $0<a<1 / 2$ it is $1 / 2+a \cos 2 \theta>0$, therefore the curve (c) is convex. Also we can find the algebric equation of the curve (c). The point $M(x, y) \in$ (c) is given by the equations:

$$
\begin{aligned}
& x=p(\theta) \cos \theta-\dot{p}(\theta) \sin (\theta) \\
& y=p(\theta) \sin \theta+\dot{p}(\theta) \cos (\theta) .
\end{aligned}
$$

After some calculations we take:

$$
\begin{aligned}
\sin ^{2} \theta & =\frac{(1 / 2+a) y^{2}}{(1 / 2+a)^{2}+2 a y^{2}} \\
\cos ^{2} \theta & =\frac{(1 / 2-a) x^{2}}{(1 / 2+a)^{2}-2 a x^{2}}
\end{aligned}
$$

and finally the equation of (c) is:

$$
\frac{(1 / 2+a) y^{2}}{(1 / 2+a)^{2}+2 a y^{2}}+\frac{(1 / 2-a) x^{2}}{(1 / 2+a)^{2}-2 a x^{2}}=1
$$

that is (c) is a convex curve of $4^{\text {th }}$ degree.
3. Theorem (a): $A\left(K_{*}\right) \geq 2 A(K)$.

Proof

From (3) follows:

$$
x \dot{y}-y \dot{x}=p_{1}^{2}+p_{2}^{2}+p_{1} \dot{p_{2}}+\dot{p_{1}} p_{2}
$$

hence,

$$
A\left(K_{*}\right)=\frac{1}{2} \oint|x \dot{y}-y \dot{x}|
$$

$$
A\left(K_{*}\right)=\frac{1}{2} \int_{0}^{2 \pi} p_{1}^{2} d \theta+\frac{1}{2} \int_{0}^{2 \pi} p_{2}^{2} d \theta+\frac{1}{2} \int_{0}^{2 \pi}\left(p_{1} p_{2}\right) d \theta
$$

but,

$$
\int_{0}^{2 \pi} p_{1} \dot{p}_{2} d \theta=0
$$

also,

$$
\int_{0}^{2 \pi} p_{1}^{2} d \theta=\int_{0}^{2 \pi} p_{2}^{2} d \theta=2 A\left(K_{0}\right)
$$

where K_{0} the pedal curve of K, that is the locus of the feet of the perpendicular from the origin to the support line of K.
From the theorem of Chernoff, see [4], it is known that:

$$
\begin{equation*}
A(K) \leq \frac{1}{2} \int_{0}^{\pi / 2} w(\theta) w(\theta+\pi / 2) d \theta \tag{6}
\end{equation*}
$$

where $w(\theta)$ is the width of K in the direction θ. But

$$
\begin{gathered}
w(\theta)=p(\theta)+p(\theta+\pi) \\
w(\theta+\pi / 2)=p(\theta+\pi / 2)+p(\theta+3 \pi / 2)
\end{gathered}
$$

From (6) follows:

$$
A(K) \leq \frac{1}{2} \int_{0}^{2 \pi} p(\theta) p(\theta+\pi / 2) d \theta=\frac{1}{2} \int_{0}^{2 \pi} p_{1} p_{2} d \theta
$$

or,

$$
A(K) \leq \frac{1}{4} \int_{0}^{2 \pi}\left(p_{1}^{2}+p_{2}^{2}\right) d \theta=A\left(K_{0}\right)=\frac{1}{2} A\left(K_{*}\right)
$$

The equality from (6), for $\mathrm{K}=$ circle.

Theorem (b): $L\left(K_{*}\right) \geq \sqrt{2} L(K)$. Starting again from the relation (3), we take:

$$
\begin{equation*}
\dot{x}^{2}+\dot{y}^{2}=\left(p_{1}+\dot{p_{2}}\right)^{2}+\left(p_{2}-\dot{p_{1}}\right)^{2} \tag{7}
\end{equation*}
$$

Using the well known inequality

$$
A^{2}+B^{2} \geq \frac{1}{2}(A+B)^{2}
$$

from (7) follows:

$$
\left(p_{1}+\dot{p_{2}}\right)^{2}+\left(p_{2}-\dot{p_{1}}\right)^{2} \geq \frac{1}{2}\left[\left|p_{1}+\dot{p_{2}}\right|+\left|p_{2}-\dot{p_{1}}\right|\right] 2
$$

therefore,

$$
L\left(K_{*}\right)=\int_{0}^{2 \pi}\left(\dot{x}^{2}+\dot{y}^{2}\right)^{\frac{1}{2}} d \theta=\frac{1}{\sqrt{2}} \int_{0}^{2 \pi}\left(p_{1}+\dot{p_{2}}\right) d \theta+\frac{1}{\sqrt{2}} \int_{0}^{2 \pi}\left|p_{2}-\dot{p_{1}}\right| d \theta
$$

But,

$$
\begin{gathered}
\int_{0}^{2 \pi} \dot{p_{1}} d \theta=0, \quad \int_{0}^{2 \pi} \dot{p_{2}} d \theta=0 \\
\int_{0}^{2 \pi}\left|p_{2}-\dot{p}_{1}\right| d \theta \geq\left|\int_{0}^{2 \pi}\left(p_{2}-\dot{p}_{1}\right) d \theta\right|=\int_{0}^{2 \pi} p_{2} d \theta
\end{gathered}
$$

Also, it is:

$$
\int_{0}^{2 \pi} p_{1} d \theta=\int_{0}^{2 \pi} p_{2} d \theta=L\left(K_{*}\right)
$$

Hence

$$
L\left(K_{*}\right) \geq \sqrt{2} L(K)
$$

References

1. N.K.Stefanidis, Differential Geometry, Thessaloniki 1982.
2. I.M.Yaglom, V.G.Boltyanskii, Convex Figures, Holt Rinehart and Winston.
3. R.V.Benson, Euclidean Geometry and Convexity, McGraw Hill, 1965.
4. P.R.Chernoff, An area-width inequality for convex curves, Amer.Math.Monthly, vol 76, N.1, pp 34-35.
5. L.Danzer, A characterization of a circle, Amer.Math.Society, Prceedings of Symposia in Pure Math. vol 7, Convexity p. 99.
