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1. Introduction
Let F be a convex figure in E2 and K = ϑF the boundary curve of F .
We suppose that K is regular convex curve with positive curvature (rotund)
and two points P1, P2 of K. The support lines at the points P1, P2 are
intersecting at the point P . Continuity arguments assure that the point set
{P/6 P1PP2 = π/2 is a curve denoted byK∗.
Definition We will call K∗, the Orthoptic curve of the curveK.
If K is the circle (O,R) then K∗ will be the circle (O,R

√
2). If K is the ellipse

x2/a2 + y2/b2/2 = 1 then K∗ will be concentric circle of radius
√

a2 + b2.
Here, the main problem for us is to determine the convex curve K supposing
that K∗ is circle, see also [1]. We will also prove the following interesting
inequalities.

(a) A(K∗) ≥ 2A(K)

(b) L(K∗) ≥ 2L(K).

Where by A we denote the area enclosed by the curves K, K∗ and L the
length.
2. The problem
We suppose that K∗ is a circle of radius 1. We will try to determine the
curve K.
Let e1 the support line at the point P ∈ K and p1 = p(θ) the support
function of K for the e1. It is well known that:

∀(x, y) ∈ e1 : x cos θ + y sin θ = p(θ) = p1 (1)

see [1].
Let now e2 the support line, perpendicular to e1, so that:

∀(x, y) ∈ e2 : x cos(θ + π/2) + y sin(θ + π/2) = p(θ + π/2) = p2 (2)
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From the system of (1) and (2) we can find the coordinates of the point
M = e1 ∩ e2. We have:

x = xM = p1 sin θ + p2 cos θ, y = yM = p1 cos θ + p2 sin θ (3)

Easily from (3) we find:
|OM |2 = p2

1 + p2
2

or,
p2(θ) + p2(θ + π/2) = 1. (4)

The function p2(θ) is periodic with period 2π. Assuming that the conditions
for the expansion in Fourier series exist, we will have:

p2(θ) =
1

2
a0 +

∞∑
1

(an cos nθ + bn sin nθ)

p2(θ + π/2) =
1

2
a0 +

∞∑
1

(dn cos nθ + gn sin nθ)

where,

dn = an cos
nπ

2
+ bn sin

nπ

2

gn = bn cos
nπ

2
− an sin

nπ

2
.

For, a0 = 1, an + dn = 0, bn + gn = 0, n ≥ 1, we find:
a1 = b1 = 0, a3 = b3 = 0, a4 = b4 = 0, a5 = b5 = 0, a7 = b7 = 0 ...,
that is a4k+i = b4k+i = 0 for i = 0, 1, 3, k natural number. We can
arbitrarely define a4k+2, b4k+2. Therefore if the support function is:

p2(θ) =
1

2
+

∞∑
1

[
a4k+2 cos(4k + 2)θ + b4k+2 sin(4k + 2)θ

]
then we will have:

p2(θ) + p2(θ + π/2) = 1.

An example.
We can take the curve (c) with support function

p(θ) =

√
1

2
+ a cos 2θ (5)
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we see that,
p2(θ) + p2(θ + π/1) = 1.

The curvature of (c) is:

1

k(θ)
= ρ(θ) = p(θ) + p̈(θ)

or

ρ(θ) =
1/4− a2

[1/2 + a cos 2θ]3/2
.

For 0 < a < 1/2 it is 1/2+a cos 2θ > 0 , therefore the curve (c) is convex.
Also we can find the algebric equation of the curve (c). The point M(x, y) ∈
(c) is given by the equations:

x = p(θ) cos θ − ṗ(θ) sin(θ)

y = p(θ) sin θ + ṗ(θ) cos(θ).

After some calculations we take:

sin2 θ =
(1/2 + a)y2

(1/2 + a)2 + 2ay2

cos2 θ =
(1/2− a)x2

(1/2 + a)2 − 2ax2

and finally the equation of (c) is:

(1/2 + a)y2

(1/2 + a)2 + 2ay2
+

(1/2− a)x2

(1/2 + a)2 − 2ax2
= 1

that is (c) is a convex curve of 4th degree.

3. Theorem (a): A(K∗) ≥ 2A(K).
Proof
From (3) follows:

xẏ − yẋ = p2
1 + p2

2 + p1ṗ2 + ṗ1p2

hence,

A(K∗) =
1

2

∮
|xẏ − yẋ|

3



A(K∗) =
1

2

∫ 2π

0
p2

1dθ +
1

2

∫ 2π

0
p2

2dθ +
1

2

∫ 2π

0

˙(p1p2)dθ

but, ∫ 2π

0
˙p1p2dθ = 0

also, ∫ 2π

0
p2

1dθ =
∫ 2π

0
p2

2dθ = 2A(K0)

where K0 the pedal curve of K, that is the locus of the feet of the perpen-
dicular from the origin to the support line of K.
From the theorem of Chernoff, see [4], it is known that:

A(K) ≤ 1

2

∫ π/2

0
w(θ)w(θ + π/2)dθ (6)

where w(θ) is the width of K in the direction θ. But

w(θ) = p(θ) + p(θ + π)

w(θ + π/2) = p(θ + π/2) + p(θ + 3π/2).

From (6) follows:

A(K) ≤ 1

2

∫ 2π

0
p(θ)p(θ + π/2)dθ =

1

2

∫ 2π

0
p1p2dθ

or,

A(K) ≤ 1

4

∫ 2π

0
(p2

1 + p2
2)dθ = A(K0) =

1

2
A(K∗).

The equality from (6), for K=circle.

Theorem (b): L(K∗) ≥
√

2L(K). Starting again from the relation (3), we
take:

ẋ2 + ẏ2 = (p1 + ṗ2)
2 + (p2 − ṗ1)

2 (7)

Using the well known inequality

A2 + B2 ≥ 1

2
(A + B)2
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from (7) follows:

(p1 + ṗ2)
2 + (p2 − ṗ1)

2 ≥ 1

2

[
|p1 + ṗ2|+ |p2 − ṗ1|

]
2

therefore,

L(K∗) =
∫ 2π

0
(ẋ2 + ẏ2)

1
2 dθ =

1√
2

∫ 2π

0
(p1 + ṗ2)dθ +

1√
2

∫ 2π

0
|p2 − ṗ1|dθ

But, ∫ 2π

0
ṗ1dθ = 0,

∫ 2π

0
ṗ2dθ = 0∫ 2π

0
|p2 − ṗ1|dθ ≥ |

∫ 2π

0
(p2 − ṗ1)dθ| =

∫ 2π

0
p2dθ

Also, it is: ∫ 2π

0
p1dθ =

∫ 2π

0
p2dθ = L(K∗).

Hence
L(K∗) ≥

√
2L(K).
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