The problem (conjecture) of Larman-Zong

G.Tsintsifas

Let G = {Ay, Ay, ... .. Ayq} be a point set in the (d—1)sphere ¢ = (0, 1) =
St = {z/|z| = 1}. We denote P = {z/A; -z < 1} for i = 1,2,.. ..2d.
Assuming that the convex cover of GG includes the center O of the sphere ¢,
we are called to prove that there is a point y € P so that |y| > v/d.

The general case of the above problem of Larman-Zong remains unsolved,
for the last ten years. My solution for d = 3 is nearly elementary but unfor-
tunatly does not work for d > 3. 1 have the information that Zong has the
solution for d = 3, 4.

We start, for better understanding, the simple case for d = 2.

In the circle ¢ = (O, 1) we have four points Ay, As, Az, A4 so that the center
O be in the interior of the quadrilateral A; A3 A3A4. The tangent lines of the
circle ¢ at the points Aq, As, A3, A4 intersect and give the quadrilateral P.
We will show that there is a vertex of P of a distance from O at least v/2.
Let w; = LA10Ay, wy = LA0A3, ws = LA30A4, wy = LAOA;. Tt is:
w1 + W + w3 + wy = 27.

We suppose that wo=max[wy, wa, w3, wy.

Obviously wy > /2.

In the triangle OA,Bs, By is the intersection of the tangents at the points
As, Az, so we have.

2
1 =0A; =0Bycoswy/2 < OBycosm/4 = 032\2_.

Or OBQ Z \/§

Proof for d=3.

We suppose that the six points Ay, Ay, .. ..Ag lie in the sphere ¢ = (O, 1) and
are the vertices of a polyhedron A with 8 triangular facets. The polyhedron
A includes the center O of the sphere ¢ hence the tangent planes to g at the
points Ay, Ay, .. ..Ag are intersected at the edges of a polyhedron B with 6
faces and 8 vertices By, Bs, .. ..Bxg.



We suppose now that Ag is the regular polyhedron with 6 vertices Aoy, Aga, .. ..Aogs
(regular octahedron) and facets equilateral triangles inscribed to the sphere

q. The tangent planes to ¢ at the points Agy, Ags, .. ..Agg are intersected and
give the cube By with vertices By, Bpg, .. ..Bos. It is simple to see that:

OBy = V3 (1)

We consider the central projection of the regular octahedron Ag from the
point O to the sphere ¢q. The result will be a regular spherical octahedron on
q with facets the equilateral spherical triangles Sp1, Sp2,.. ..Sos-
Similarly, the cental projection from the point O of the octahedron A gives
the spherical octahedron S with spherical facets Si, Ss,.. ..Ss. We obviously
have:

U, S = Us_, S = 4 (sur face q) (2)
We assume now that AreaSy = maz.AreasS; for i = 1,2,...8. From (2) we

conclude

AreaSy > AreaSy, (3)
Fori=1,2,....8.
Let ¢; the circumscribed circle of Sy on the sphere ¢ and respectively ¢
the circle defined by Sp;. We denote by T} the equilateral spherical triangle
inscribed to the spherical circle ¢;. It is well known that:

AreaT;, > AreaS;, (4)
From (3) and (4) follows:
AreaT), > AreaSy;.

So we conclude that the circle ¢, is no smaller than the circle ¢y. Therefore
the distance pjy of the center O from ¢ is no bigger from the same elements
of the regular octahedron respectively, that is:

1

Pk < Pox = 7 (5)

But from the rectangular triangle O A; B;, we have:

1
i Pk > \/g

or,

OB; > V3.

Unfortunately, it seems that the above proof, does not work for d > 3, so the
problem is still open.



