The problem (conjecture) of Larman-Zong

G.Tsintsifas

Let $G = \{A_1, A_2, \dots ... A_{2d}\}$ be a point set in the (d-1)sphere $q = (O, 1) = S^{d-1} = \{x/|x| = 1\}$. We denote $P = \{x/A_i \cdot x \leq 1\}$ for $i = 1, 2, \dots ... 2d$. Assuming that the convex cover of G includes the center O of the sphere q, we are called to prove that there is a point $y \in P$ so that $|y| \geq \sqrt{d}$.

The general case of the above problem of Larman-Zong remains unsolved, for the last ten years. My solution for d = 3 is nearly elementary but unfortunately does not work for d > 3. I have the information that Zong has the solution for d = 3, 4.

We start, for better understanding, the simple case for d=2.

In the circle q = (O, 1) we have four points A_1, A_2, A_3, A_4 so that the center O be in the interior of the quadrilateral $A_1A_2A_3A_4$. The tangent lines of the circle q at the points A_1, A_2, A_3, A_4 intersect and give the quadrilateral P. We will show that there is a vertex of P of a distance from O at least $\sqrt{2}$.

Let $w_1 = \angle A_1 O A_2$, $w_2 = \angle A_2 O A_3$, $w_3 = \angle A_3 O A_4$, $w_4 = \angle A_4 O A_1$. It is: $w_1 + w_2 + w_3 + w_4 = 2\pi$.

We suppose that $w_2=\max[w_1, w_2, w_3, w_4]$.

Obviously $w_2 \geq \pi/2$.

In the triangle OA_2B_2 , B_2 is the intersection of the tangents at the points A_2 , A_3 , so we have.

$$1 = OA_2 = OB_2 \cos w_2 / 2 \le OB_2 \cos \pi / 4 = OB_2 \frac{\sqrt{2}}{2}.$$

Or $OB_2 \geq \sqrt{2}$.

Proof for d = 3.

We suppose that the six points A_1, A_2, A_6 lie in the sphere q = (O, 1) and are the vertices of a polyhedron A with 8 triangular facets. The polyhedron A includes the center O of the sphere q hence the tangent planes to q at the points A_1, A_2, A_6 are intersected at the edges of a polyhedron B with 6 faces and 8 vertices B_1, B_2, B_8.

We suppose now that A_0 is the regular polyhedron with 6 vertices $A_{01}, A_{02}, \dots A_{06}$ (regular octahedron) and facets equilateral triangles inscribed to the sphere q. The tangent planes to q at the points $A_{01}, A_{02}, \dots A_{06}$ are intersected and give the cube B_0 with vertices $B_{01}, B_{02}, \dots B_{08}$. It is simple to see that:

$$OB_{0i} = \sqrt{3} \tag{1}$$

We consider the central projection of the regular octahedron A_0 from the point O to the sphere q. The result will be a regular spherical octahedron on q with facets the equilateral spherical triangles $S_{01}, S_{02}, \dots S_{08}$.

Similarly, the cental projection from the point O of the octahedron A gives the spherical octahedron S with spherical facets S_1, S_2, S_8. We obviously have:

$$\bigcup_{i=1}^{8} S_i = \bigcup_{i=1}^{8} S_{0i} = 4\pi (surface \ q)$$
 (2)

We assume now that $AreaS_k = max.AreaS_i$ for i = 1, 2,8. From (2) we conclude

$$AreaS_k \ge AreaS_{0i}$$
 (3)

For $i = 1, 2, \dots 8$.

Let c_k the circumscribed circle of S_k on the sphere q and respectively c_0 the circle defined by S_{0i} . We denote by T_k the equilateral spherical triangle inscribed to the spherical circle c_k . It is well known that:

$$AreaT_k \ge AreaS_k$$
 (4)

From (3) and (4) follows:

$$AreaT_k \geq AreaS_{0i}$$
.

So we conclude that the circle c_k is no smaller than the circle c_0 . Therefore the distance p_k of the center O from c_k is no bigger from the same elements of the regular octahedron respectively, that is:

$$p_k \le p_{0k} = \frac{1}{\sqrt{3}} \tag{5}$$

But from the rectangular triangle OA_iB_i , we have:

$$OA_i^2 = 1 = p_k \cdot OB_i \le \frac{1}{\sqrt{3}}OB_i$$

or,

$$OB_i \ge \sqrt{3}$$
.

Unfortunately, it seems that the above proof, does not work for d > 3, so the problem is still open.