Some Inequalities for a n-simplex

G.Tsintsifas

(1). We recently proved an inequality between the width and the diameter of a n-simplex in E^{n}, see [3]. We continue this work using Leibniz formula and in the present note we give a stronger result including the width of a simplex and the sum of squares of its edges. We also have found an inequality joining the width and the circumradius as well as an inequality between the circumradius and the sum of the edges of a n-simplex.
Leibniz formula, or as it is better known, the polar moment of inertia theorem for a system of k points A_{1}, A_{2}, \ldots... A_{k} in E^{n}, with masses $m_{1} m_{2}, \ldots . . . m_{k}$ respectively, asserts:

$$
\sum_{i=1}^{k}{\overrightarrow{A_{i} P}}^{2}=m \overrightarrow{G P}^{2}+\frac{1}{m} \sum_{i<j}^{1, k}{A_{i} \vec{A}_{J}}^{2}
$$

where $m=\sum_{i}^{k} m_{i}, G$ the center of mass of the system $A_{1}\left(m_{1}\right), A_{2}\left(m_{2}\right), A_{k}\left(m_{k}\right)$ and P some point in E^{n}, see [1],[2].
The above formula for $m_{1}=m_{2}=\ldots . \quad m_{k}=1$ and G the centroid of the point set $\left\{A_{1}, A_{2}, \ldots . . A_{k}\right\}$ gives:

$$
\begin{equation*}
\sum_{i=1}^{k}{\overrightarrow{A_{i} P^{2}}}^{2}=k \cdot \overrightarrow{G P}^{2}+\frac{1}{k} \sum_{i<j}^{1, k}{\overrightarrow{A_{i}} \vec{A}_{j}}^{2} . \tag{1}
\end{equation*}
$$

(2). Let now $A=\left\{A_{1}, A_{2}, A_{k}\right\}$ and $B=\left\{B_{1}, B_{2}, B_{p}\right\}$ two point sets in E^{n} and G_{A}, G_{B} their centroids respectively. We can prove the following generalization of the formula of Leibniz:

$$
\begin{equation*}
\sum_{j=1}^{k} \sum_{i=1}^{p}{\overrightarrow{A_{j}} B_{i}}^{2}=k p G_{A} \vec{G}_{B}^{2}+\frac{p}{k} \sum_{i<j}^{1, k}{A_{i} \vec{A}_{j}}^{2}+\frac{k}{p} \sum_{i<j}^{1, p} B_{i} \vec{B}_{j}^{2} . \tag{2}
\end{equation*}
$$

Proof

From formula (1) for $P=G_{B}$, we take:

$$
\begin{equation*}
\sum_{j=1}^{k}{A_{j}}_{\vec{G}_{B}}{ }^{2}=k \cdot \vec{G}_{A} \vec{G}_{B}{ }^{2}+\frac{1}{k} \sum_{q<l}^{1, k}{\overrightarrow{A_{q}} A_{l}}^{2} \tag{3}
\end{equation*}
$$

The same formula (1) for the point system $B=\left\{B_{1}, B_{2}, \ldots . . B_{p}\right\}$ for $P=A_{j}$, gives:

$$
\begin{equation*}
\sum_{i=1}^{p}{\overrightarrow{B_{i} A_{j}}}^{2}=p \cdot{\overrightarrow{G_{B} A_{j}}}^{2}+\frac{1}{p} \sum_{s<t}^{1, p}{\overrightarrow{B_{s} B_{t}}}^{2} \tag{4}
\end{equation*}
$$

We substitute $\vec{G}_{B} A_{j}{ }^{2}$ from (4) in (3) and the summation with respect to j from 1 to k leads us to the formula (2).
(3). We can easily see that the number T of the partitions of a point set $A=\left\{A_{1}, A_{2}, . . \quad . . A_{s}\right\}$ into two subsets with cardinal numbers k and p, $k+p=s$, respectively is:
if $k=p$

$$
T=T_{1}=\frac{1}{2}\binom{k+p}{p}
$$

for $k \neq p$

$$
T=T_{2}=\binom{k+p}{p}
$$

Suppose that G_{k}^{r}, G_{p}^{r} are the centroids of the two subsets of the $r^{t h}$ partition. We will calculate the sum:

$$
G=\sum_{r=1}^{T}\left(G_{k}^{r} G_{p}^{r}\right)^{2}
$$

(a). For $k=p$

In the formula (2) we put:
$A_{j}=A_{r_{j}}, B_{i}=A_{r_{i}}$ where: $r_{i} \neq r_{j}$

$$
\begin{gathered}
r_{i} \in\{1,2, \ldots ., s\} \\
r_{j} \in\{1,2, . ., s\}
\end{gathered}
$$

That is $A_{r_{j}}, A_{r_{i}}$ belong to the first and the second subset of A in the $r^{t h}$ partition. We apply formula (2) T_{1} times (in each partition) and we add the resulting formulas. Putting

$$
S=\sum_{i<j}^{1, s}{\overrightarrow{A_{i}}}_{A_{j}}{ }^{2}
$$

we see that in the first member S appears

$$
\frac{\frac{1}{2} T_{1} k p}{\binom{p+k}{2}}
$$

times.
From the last two terms of the second member of (2) S appears (in the whole sum)

$$
\frac{\left.\frac{1}{2} T_{1}\left[\begin{array}{c}
\frac{p}{k} \\
k \\
2
\end{array}\right)+\frac{k}{p}\binom{p}{2}\right]}{\binom{p+k}{2}}
$$

times.
Therefore we will have:

$$
\frac{\frac{1}{2}\binom{p+k}{p} \left\lvert\,\left[k p-\frac{p}{k}\binom{k}{2}-\frac{k}{p}\binom{p}{2}\right] S\right.}{\binom{p+k}{2}}=p k G
$$

or,

$$
\begin{equation*}
\frac{1}{2}\binom{k+p}{p} S=(k+p-1) k p G \tag{5}
\end{equation*}
$$

(b). The formula for $k \neq p$ is similar. That is:

$$
\begin{equation*}
\binom{k+p}{p} S=(k+p-1) k p G \tag{6}
\end{equation*}
$$

From the formulas (5),(6) we easily see that

Minimum G

is taken for $k=\left[\frac{S}{2}\right], k+p=S$.
(4). Assuming now that $S=n+1$ and $A_{1} A_{2} \ldots \quad . . A_{n+1}$ are the vertices of a n-simplex in E^{n}, formulas (5) and (6) give the minimum width of the simplex.
Indeed, we suppose d be the minimum width of the simplex.
(a). Let n be odd, hence $n+1=$ even and $\frac{n+1}{2}=$ integer. We consider a partition of the point set $A=\left\{A_{1}, A_{2}, \ldots . . A_{n+1}\right\}$ into two parts having $\frac{n+1}{2}$ points in each part. Therefore each part determines an hyperplane parallel
to the other. We see that d is no bigger than the distance of the Centroids of the two parts. So formula (5) finally gives:

$$
\begin{equation*}
S \geq n\left[\frac{n+1}{2}\right]^{2} d^{2} \tag{7}
\end{equation*}
$$

(b). For $n=$ even, we analogously take:

$$
\begin{equation*}
S \geq \frac{n^{2}(n+2)}{4} d^{2} \tag{8}
\end{equation*}
$$

From formulas (7) and (8) we find again our formulas in Crux, see [3]. Indeed it is enough to take:

$$
\binom{n+1}{2} D^{2} \geq S
$$

where D is the diameter of the simplex.
(5). From the formula of Leibniz (1), putting $P=O$ the circumcenter, we take:

$$
\begin{equation*}
(n+1)^{2} R^{2} \geq \sum_{i<j}^{1, n+1} A_{i} A_{j}{ }^{2} \tag{9}
\end{equation*}
$$

for the simplex $A_{1} A_{2} \ldots . A_{n+1}$.
For n odd, from (7), (9) we take:

$$
\begin{equation*}
\frac{2 R}{\sqrt{n}} \geq d \tag{10}
\end{equation*}
$$

and for n even from (8), (9) we take:

$$
\begin{equation*}
\frac{2(n+1) R}{n \sqrt{n+2}} \geq d \tag{11}
\end{equation*}
$$

So we have an inequality between the width and the circumradius of the simplex.
(6). We can obtain another remarkable inequality between the circumradius and the sum of edges of a n-simplex, using again the formula of Leibniz.
From (9) and the well known mean square inequality

$$
\frac{1}{\binom{n+1}{2}} \sum_{i<j}^{1, n+1}{\overrightarrow{A_{i}}}_{A_{j}}{ }^{2} \geq\left[\frac{\sum_{i<j}^{1, n+1} \mid \overrightarrow{A_{i} A_{j} \mid}}{\binom{n+1}{2}}\right]^{2}
$$

we take:

$$
\begin{equation*}
R \geq \frac{S_{1}}{(n+1) \sqrt{\frac{n(n+1)}{2}}} \tag{12}
\end{equation*}
$$

where, $S_{1}=\sum_{i<j}^{1, n+1}\left|\overrightarrow{A_{i} A_{j}}\right|$. For $n=2$ we have the well known triangle inequality:

$$
3 R \sqrt{3} \geq a+b+c
$$

References

1. M.S.Klamkin,Geometric inequalities via the Polar Moment of Inertia, Math.Magazine 48 (1975),44-46.
2. G.Tsintsifas, Leibniz formula and Geometric Inequalities, in my Blog.
3. G.Tsintsifas, Crux Mathematicorum, problem 1162.
