
On Minkowski Geometry
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Introduction
Minkowski Geometry is an interesting realization of finite Banach spaces. In
this note we extend some well known properties of the Euclidean space En

in Minlowski space Mn.
Let O be the origin of the Euclidean space En and K a centrally symmetric
compact convex body, x and y are points in En and L(xy) the length of
diameter of K in the direction of the line xy. The Minkowski distance is
defined by:

‖x− y‖ =
2|x− y|
L(xy)

where |x− y| is the Euclidean distance of the points x and y.
The proof that the above defined distance is a metric can be found in several
places and for two different proofs the reader can consult [1] and [2]. The
centrally symmetric convex body K will be refered as the unit Minkowskian
ball and its boundary as the unit Minkowskian sphere and for simplicity
usually it would be considered as a smooth surface.
Definations
Let sn = A1A2.. ..An+1 be a n-smplex in En, z0 a point and R a real
number so that sn is inscribed in the convex body K0 = z0 + R · K. We
define K0 as the circumscribed Minkowskian sphere of sn and we denote
it by K0(z0, R). The point z0 is the Minkowskian circumcenter and R the
Minkowskian circumradius. We similarly define the Minkowskian insphere
Ki = zi + rK̇ inscribed in sn.
1. Generaliged Euler’s inequality.
Let K0(z0, R) the Minkowskian circumsphere and Ki(zi, r) the Minkowskian
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insphere of the n-simplex sn = A1A2... ..An+1 in Mn, then, it holds:

R ≥ nr

see [4],[5].
Proof
Suppose Bi is the point of Ki on the facet sn−1

i opposite to the vertex Ai and
M an interior point in sn. Let AiHi the Minkowskian altitude of sn from the
vertex Ai and Mi the point of intrsection of the parallel line from the M to
the line ziBi with the plane sn−1

i , that is the (Minkowskian) distance of the
point M from sn−1

i .
We will prove:

n+1∑
i=1

qi‖M −Mi‖ = r (1)

n+1∑
i=1

qi‖M − Ai‖ ≥ nr (2)

where q1, q2, ... .qn+1 the barycentric coordinates of the incenter zi.
We easily see that:

qi =
‖zi −Bi‖
‖Ai −Hi‖

, or qi =
r

hi

(3)

denoting ‖Ai −Hi‖ = hi.
Also supposing that m1, m2, ... ..mn+1 are the barycentric coordinates of the
point M , we have:

n+1∑
i=1

‖M −Mi‖
hi

=
n+1∑
i=1

mi = 1

and using (3)
n+1∑
i=1

qi‖M −Mi‖ = r.

The Minkowskian distance of the point Ai from the plane of sn−1
i is hi, so

that it is obvious that:

‖Ai −M‖+ ‖M −Mi‖ ≥ hi (4)

or
qi‖Ai −M‖+ qi‖M −Mi‖ ≥ qihi = r
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Therefore:
n+1∑
i=1

qi‖Ai −M‖+
n+1∑
i=1

qi‖M −Mi‖ ≥ (n + 1)r.

From the above proved relation (1) follows (2).
Euler’s inequality between R and r is an easy application of (2). We take
M = z0 the center of the Minkowski sphere K0. The equality in (2) follows
from (4), that is if and only if M is the common point of the altitudes. So it
will be R = nr if and only if the circumcenter z0 coincides with the common
point of the altitudes.
Some other remarkable inequalities of the n-smplex can arise from the above:
From the formula (3) we take

n+1∑
i=1

1

hi

=
1

r
(5)

and using Cauchy-Schwarz inequality we obtain

n+1∑
i=1

hi ≥ (n + 1)2 · r (6)

Let now qij, (i, j) 6= 1 be the parallel line from the incenter zi to the edge
AiAj, Pi, Pj the common points of the insphere with qij and Qi, Qj the
same points with the boundary of the simplex sn (try with a tetrahedron
A1A2A3A4).
We suppose that A1Qi ∩ AiAk = Fik and A1Qj ∩ AjAk = Fjk.
It is simple to see that:

1− q1 =
‖Qi −Qj‖
‖Fil − Fjk‖

>
‖Pi − Pj‖
‖Ai − Aj‖

=
2r

‖Ai − Aj‖
or

‖Ai − Aj‖ >
2r

1− q1

.

Repeating the same inequality for q2, q3, .....qn+1 and adding we take:

1,n+1∑
i>j

‖Ai − Aj‖ > 2r
n+1∑
i=1

1

1− qi

.

Last inequality and Cauchy-Schwarz inequality lead to:

1,n+1∑
i>j

‖Ai − Aj‖ >
2r(n + 1)2

n
. (7)
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For n=2 and an affine regular hexagon as the Minkowski unit sphere, the
formula (7) can be the equality.
Another interesting Proof to the inequality of Euler is the following.
Let A′

i be the centroid of the facet opposite to the vertex Ai of the simplex
sn = A1A2... .An+1. The simplices s′n = A′

1A
′
2.... .A′

n+1 and sn are similar
with ratio 1

n
, hence, the radius of the Minkowskian sphere (zg, R

′) the cir-
cumscribed to s′n is R′ = R/n. The sphere (zg, R

′) is obviously no smaller
than the inscribed sphere (zi, r) in sn, therefore R/n ≥ r.
2. The problem of Fermat
G.D. Chakerian and M.A. Ghandehari have succefully investigated the well
known problem of Fermat, see [7], in Mn. We will try on some aspect of the
same problem.
We consider in Mn the simplex sn = P1P2... ..Pn+1 and m1, m2, .... ..mn+1

are positive real numbers so that
∑n+1

i=1 mi = 1.
The problem is to determine the point x, so that the function

f(x) =
n+1∑
i=1

mi‖x− Pi‖

has a minimum. Compactness arguments assure us that there is an interior
point z ∈ sn so that:

f(z) =
n+1∑
i=1

mi‖z − Pi‖

be a minimum.
Let now K(z, 1) be the Minkowski unit sphere and B′

i the points of intersec-
tion of the lines zPi with the sphere K.
The support planes at the points B′

i form a n-simplex gn = A′
1A

′
2... ..A′

n+1.
We denote by gn−1

i the n− 1 simplex opposite the vertex A′
i, on the support

plane at B′
i. From [7] page 230, we have:

gradf(z) =
n+1∑
i=1

mi
ui

pi

= 0 (8)

where, pi the Euclidean distance of z from gn−1
i and ui is the unit vector

perpendicular to the n−1 simplex gn−1
i having an outword direction relative

to gn−1
i .

We also denote by Vi the volume of the simplex gn−1
i . It is known that

n+1∑
i=1

Viui = 0 (9)
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The vectors u1, u2, ... ..un+1 are independant so from (8) and (9) follows:

m1

V1p1

=
m2

V2p2

= .... .. =
mn+1

Vn+1pn+1

.

that is the incenter z of gn must have as barycentric coordinates m1, m2, ... ..mn+1.
We will prove now that, for every point M 6= z, f(M) > f(z).
We consider from P1 the parallel hyperplane to the facet gn−1

i . These hyper-
planes give a n-simplex sn = A1A2... ..An+1 having as insphere Ki(zi, r). The
boundary points of Ki on its facets sn−1

i are Bi.The simplices A1A2....An+1

and B1B2.....Bn+1 are similar therefore z and zi have the same barycentric
coordinates. Let Mi be the feet of the Minkowskian perpendicular from M
to sn−1

i . In (1) we have proved that:

n+1∑
i=1

mi‖M −Mi‖ = r

and of course
n+1∑
i=1

mi‖z − Pi‖ = r.

But, certenly holds:
‖M − Pi‖ ≥ ‖M −Mi‖.

Therefore,
n+1∑
i=1

mi‖M − Pi‖ >
n+1∑
I=1

mi‖z − Pi‖

for M 6= z.
3. Generaliged Feuerbach circle.
We denote by G the centroid of the simplex sn = A1A2... ..An+1 and G1 the
centroid of the facet Sn−1

1 opposite of the vertex A1. The homothety F of
center G and ratio −1 : n transforms the Minkowski circumsphere K0(zo, R)
of the sn int the sphere Kf (zf , R

′ = R : n). The point H determined from
the relation

~zoH =
n+1∑
i=1

~zoAi (10)

is transformed (by F) to the point zo and the sphere Kf intersects the line
segments HAi at the points Di so that, HDi : HAi = 1 : n That is because

~zoH = ~zoAj + ~AjH

5



and from (10)
~zoA2 + ~zoA3 + ... + ~zoAn+1 = ~A1H

or
n · ~zoG1 = ~A1H

For n=2 and Ko the circumcircle of the triangle A1A2A3 we recognize Kf as
the Feuerbach circle or the circle of the nine points.
The following remarks are very simple.
1. If zoGi is prpendicular to the facet sn−1

i , for i = 1, 2, 3.....n+1, the altitudes
of the smplex sn have a common point.
2. Suppose that the altitudes of the simplex sn have a common point H and

~zoH =
n+1∑
i=1

~z)oAi

then the line zoGi is perpendicular to the facet sn−1
i .

3. In M2 we consider the Minkowski unit circle as ellipse. Therefore Kf is
an ellipse. An affine transformation transforms Kf to a circle c and informs
us that Kf contains:
(a). The middle points of the sides of the triangle A1A2A3.
(b). The middle points of the line segments HA1, HA2, HA3, where HAi is
parallel to the line zoGi.
(c). The points of intersections of the lines HA1, HA2, HA3 with the sides
A2A3, A3A1, A1A2, respectively.
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