Problem (The inscircle in a regular tetrahedron)

G.Tsintsifas

The inscircle of a tetrahedron is a circle of maximum radius inscribed in the tetrahedron for every direction in E^{3}. Find the radius of the inscircle of the regular tetrahedron.

Solution.

Let $s=A_{1} A_{2} A_{3} A_{4}$ be a regular tetrahedron and p be a plane of direction t_{0} in E^{3}. We denote by $w=p \cap s$ and let r_{1} be the radius of the inscircle in w. We suppose:
(1). $r_{t_{0}}=$ max. r_{1}.
(2). $r_{t}=\min . r_{t_{0}}$, for every direction t_{0}. We are looking for r_{t}. That is the radius of the inscircle of s is r_{t}.
We need the following lemma.

Lemma

Let $O \vec{M}_{1}=u_{1}, O \vec{M}_{2}=u_{2}, O \vec{M}_{3}=u_{3}, O \vec{M}_{4}=u_{4}$ four unit vectors so that $M_{1} M_{2} M_{3} M_{4}$ be a regular tetrahedron, then for every unit vector v holds:

$$
\sum_{1}^{4}\left(u_{i} \cdot v\right)^{2}=\frac{4}{3} .
$$

Proof
We use barycentric coordinates, We can find the numbers $m_{1}, m_{2}, m_{3}, m_{4}$ so that: $v=\sum_{1}^{4} m_{i} u_{i}$ and $\sum_{1}^{4} m_{i}=1$.
But $\sum_{1}^{4} u_{i}=0$ and $\left|u_{i}\right|=1$. We easily find $\left(u_{i}, u_{j}\right)=-1 / 3$.

So we will have:

$$
\text { (a) } \quad\left(u_{i}, v\right)=m_{j}-\frac{1}{3}\left(1-m_{j}\right), \quad \text { or } \quad m_{j}=\frac{1+3\left(u_{i}, v\right)}{4}
$$

But

$$
v^{2}=\left(\sum_{1}^{4} m_{i} \cdot u_{i}\right)^{2}=\sum_{1}^{4} m_{i}^{2}-2 / 3 \sum_{i \geq j}^{1,4} m_{i} m_{j}=1
$$

Taking in mind that $\sum_{1}^{4} m_{i}=1$, we easily find $\sum_{1}^{4} m_{i}^{2}=1$.
Squaring (a) and adding from 1 to 4 we take:

$$
\sum_{1}^{4}\left(u_{i}, v\right)^{2}=4 / 3
$$

Now we go back to the original problem.
We suppose that s is circumscribed to the unit sphere $(O, 1), O v_{1} v_{2} v_{3}$ be an orthonormal Cartesian system and $v_{3}=t_{0}$.
The equation of the inscribed circle (q) in w is:

$$
\begin{equation*}
\text { (q) : } \quad\left(x-y, v_{1}\right)^{2}+\left(x-y, v_{2}\right)^{2}=r_{1}^{2} \tag{1}
\end{equation*}
$$

where y is the center of (q) and $x \in(q)$.
We denote by $u_{1}, u_{2}, u_{3}, u_{4}$ the unit vectors perpendicular to the facets of s and with direction outside of s. Obviously $\sum_{1}^{4} u_{i}=0$.
The point

$$
\begin{equation*}
x_{i}=y+r \frac{\left(u_{i}, v_{1}\right) v_{1}+\left(u_{i}, v_{2}\right) v_{2}}{\left[\left|\left(u_{i}, v_{1}\right) v_{1}+\left(u_{i}, v_{2}\right) v_{2}\right|\right]^{1 / 2}} \tag{2}
\end{equation*}
$$

lies on the circle (q).
The formula (2) can be written:

$$
\begin{equation*}
x_{i}=y+\frac{P u_{i}}{\left|P u_{i}\right|}, \tag{3}
\end{equation*}
$$

where $P u_{i}=\left(u_{i}, v_{1}\right) v_{1}+\left(u_{i}, v_{2}\right) v_{2}$.
The point x_{i} is an interior point of s, so we will have:

$$
\left(u_{i}, x_{i}\right) \leq 1
$$

or

$$
\left(y+r_{1} \frac{P u_{i}}{\left|P u_{i}\right|}, u_{i}\right) \leq 1
$$

or

$$
\begin{equation*}
\left(y, u_{i}\right)+\frac{r_{1}\left(P u_{i}, u_{i}\right)}{\left|P u_{i}\right|} \leq 1 . \tag{4}
\end{equation*}
$$

But

$$
\left(P u_{i}, u_{i}\right)=\left(u_{i}, v_{1}\right)^{2}+\left(u_{i}, v_{2}\right)^{2}=\left|P u_{i}\right|^{2},
$$

and from (4) follows:

$$
\begin{equation*}
\left(y, u_{i}\right)+r_{1}\left|P u_{i}\right| \leq 1 . \tag{5}
\end{equation*}
$$

The equality in (5) holds for $r_{1}=r_{t_{0}}$, that is, when the incircle has points of contact in every facet of s. Hence,

$$
\begin{equation*}
\left(y, u_{i}\right)+r_{t_{0}}\left|P u_{i}\right|=1 . \tag{6}
\end{equation*}
$$

From (6) follows:

$$
\left(y, u_{1}+u_{2}+u_{3}+u_{4}\right)+r_{t_{0}} \sum_{1}^{4}|P u i|=4
$$

hence

$$
\begin{equation*}
r_{t_{0}}=\frac{4}{\sum_{1}^{4}\left|P u_{i}\right|} . \tag{7}
\end{equation*}
$$

From (7) we easily understand that:

$$
\begin{equation*}
r_{t 0}=\frac{4}{\max \sum_{1}^{4}\left|P u_{i}\right|}, \tag{8}
\end{equation*}
$$

so, we will try to deternine the $\max \sum_{1}^{4}\left|P u_{i}\right|$.
Obviously

$$
1=\left(u_{i}, v_{1}\right)^{2}+\left(u_{i}, v_{2}\right)^{2}+\left(u_{i}, v_{3}\right)^{2}=\left(u_{i}, v_{3}\right)^{2}+\left|P u_{i}\right|^{2},
$$

Therefore,

$$
4=\sum_{1}^{4}\left(u_{i}, v_{3}\right)^{2}+\sum_{1}^{4}\left|P u_{i}\right|^{2} .
$$

From the lemma we know that $\sum_{1}^{4}\left(u_{i}, v_{3}\right)^{2}=4 / 3$, so we have:

$$
\begin{equation*}
\sum_{1}^{4}\left|P u_{i}\right|^{2}=8 / 3 \tag{9}
\end{equation*}
$$

Caushy-Schwarz inequality asserts:

$$
\frac{\sum_{1}^{4}\left|P u_{i}\right|^{2}}{4} \geq\left[\frac{\sum_{1}^{4}\left|P u_{i}\right|}{4}\right]^{2}
$$

or,

$$
4 \sqrt{\frac{2}{3}} \geq \sum_{1}^{4}\left|P u_{i}\right|
$$

and from (8) follows:

$$
\begin{equation*}
r_{t}=\sqrt{\frac{3}{2}} \tag{10}
\end{equation*}
$$

The equality holds when

$$
\left|P u_{1}\right|=\left|P u_{2}\right|=\left|P u_{3}\right|=\left|P u_{4}\right|
$$

or,

$$
\begin{equation*}
\left(u_{1}, v_{3}\right)^{2}=\left(u_{2}, v_{3}\right)^{2}=\left(u_{3}, v_{3}\right)^{2}=\left(u_{4}, v_{3}\right)^{2} . \tag{11}
\end{equation*}
$$

The existance

The Analytical and Logical steps lead us to the formulas (10) and (11) but we have now to prove that there is a vector v_{3} and an interior to s circle of radius $\sqrt{3 / 2}$, so that (10) and (11) be correct.
Indeed, let be the regular tetrahedron $s=A B C D$ circuscribed to the sphere $(\mathrm{O}, 1)$ and K, L, M, N the middle points of the edges $A B, A C, C D, B D$. The inscribed circle in the square $K L M N$ has radius $r_{1}=\sqrt{3 / 2}$. Therefore the circle $(O, \sqrt{3 / 2})$ is the max. inscribed circle in s. This circle can rotate inside to s. Also the unit vector perpendicular to the plane $K L M N$ can be taken as the vector v_{3} in the formulas (11).

