# Some Inequalities for a triangle. 

G.Tsintsifas

Let $A B C$ be a triangle and $M$ an interior point. We denote by $R_{m}$ the sum of the distances of the point $M$ from the vertices of $A B C$ and by $r_{m}$ the sum of the distances of the point $M$ from the sides. We will prove:

$$
\begin{align*}
\text { (a). } & r_{O} & \geq r_{G} & \geq r_{I} \geq r_{H}  \tag{1}\\
\text { (b). } & R_{O} & \geq R_{H} & \geq R_{G} \geq R_{I} \tag{2}
\end{align*}
$$

Where by $O, G, I, H$ are respectively denoted the pericenter, the centroid, the incenter and the orthocenter.

## Proof

(1). $r_{O} \geq r_{G}$

We obviusly have

$$
3 r_{G}=h_{1}+h_{2}+h_{3}
$$

but

$$
h_{1}+h_{2}+h_{3} \leq 5 r+2 R \leq 3(R+r) .
$$

Also $3 r_{O}=3(R+r)$,
Therefore: $r_{O} \geq r_{G}$, see [1], 6.12
(2). $r_{G} \geq r_{I}$.

$$
3 r_{G}=h_{1}+h_{2}+h_{3} \geq 9 r
$$

hence $r_{G} \geq r_{I}$,
see[1], 7.12
(3). $\quad r_{I} \geq r_{H}$

$$
2 R+5 r \geq h_{1}+h_{2}+h_{3}=r_{H}+2(R+r)
$$

that is $\quad r_{I} \geq r_{H}$, see [1], 6.12
(b).
(1). $\quad R_{O} \geq R_{H}$
$R_{H}=2\left(p_{1}+p_{2}+p_{3} \quad\right.$ where $p_{1}, p_{2}, p_{3}$ are the distances of the pericenter from the sides of the triangle $A B C$, that is $r_{O}=p_{1}+p_{2}+p_{3}=R+r$, hence,

$$
R_{H}=2(R+r 0) \leq 3 R=R_{O}
$$

(2). $\quad R_{H} \geq R_{G}$

We have

$$
R_{H}=2(R+r) \geq 3 R=R_{O}
$$

according [1], 6.2
(3). $\quad R_{G} \geq R_{I}$

Let $e_{1}, e_{2}, e_{3}$ be the unit vectors of $\overrightarrow{I A}, \overrightarrow{I B}, \overrightarrow{I C}$. We will have:

$$
\begin{equation*}
I \vec{M}=e_{1}+e_{2}+e_{3}=\frac{\overrightarrow{I A}}{I A}+\frac{\overrightarrow{I B}}{I B}+\frac{\overrightarrow{I C}}{I C} \tag{3}
\end{equation*}
$$

Or

$$
\begin{equation*}
I \vec{M}=\frac{1}{r}\left(\sin \frac{A}{2} \cdot I \overrightarrow{I A}+\sin \frac{B}{2} \cdot I \vec{B}+\sin \frac{C}{2} \cdot \overrightarrow{I C}\right) \tag{4}
\end{equation*}
$$

that is the barycentric coordinates of the point $M$ are:

$$
\lambda \sin \frac{A}{2}, \lambda \sin \frac{B}{2}, \lambda \sin \frac{C}{2},
$$

where

$$
\lambda=\frac{1}{\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2}} .
$$

Also $\overrightarrow{I G}=\frac{1}{3}(\overrightarrow{I A}+\overrightarrow{I B}+\overrightarrow{I C})$, that is the barycentric coordinates of the point $G$ are $1 / 3,1 / 3,1 / 3$.
We can now suppose that $a \geq b \geq c$ and $A D, B E, C Z$ the bissectrices from $A, B, C$. We easily determine the position of the points $M$ and $G$ inside the triangle $A B C$, that is: The point $M$ is in the triangle $A I Z$ and the point $G$ in the triangle $G I D$. Therefore $\angle G I M>\angle D I Z=\pi / 2+B / 2$, hence

$$
\begin{equation*}
\overrightarrow{I G} \cdot I \vec{M} \leq 0 . \tag{5}
\end{equation*}
$$

We now have

$$
\begin{aligned}
& I A+I B+I C=\overrightarrow{I A} \cdot e_{1}+\overrightarrow{I B} \cdot e_{2}+\overrightarrow{I C} \cdot e_{3}= \\
= & (\overrightarrow{I G}+\overrightarrow{G A}) e_{1}+(\overrightarrow{I G}+\overrightarrow{G B}) e_{2}+(\overrightarrow{I G}+\overrightarrow{G C}) e_{3}= \\
= & \overrightarrow{I G}\left(e_{1}+e_{2}+e_{3}\right)+\overrightarrow{G A} \cdot e_{1}+\overrightarrow{G B} \cdot e_{2}+\overrightarrow{G C} \cdot e_{3}
\end{aligned}
$$

That is:

$$
\begin{equation*}
I A+I B+I C=\overrightarrow{I G} \cdot I \vec{M}+\overrightarrow{G A} \cdot e_{1}+\overrightarrow{G B} \cdot e_{2}+\overrightarrow{G C} \cdot e_{3} \tag{6}
\end{equation*}
$$

From (5),(6) follows.

$$
I A+I B+I C \leq\left|\overrightarrow{G A} \cdot e_{1}\right|+\left|\overrightarrow{G B} \cdot e_{2}\right|+\left|\overrightarrow{G C} \cdot e_{3}\right| \leq G A+G B+G C
$$

remark 1. The proof of (b). 3 is based in the very clever solution of my friend Nikos Deriades who first proved (5).
remark 2. Another, probably normal way, to solve the problem is the following.
We drop the perpendiculars $B B^{\prime}, C C^{\prime}$ and from the middlepoint $M$ of $B C$ to the bissectrice $A D$. The following relations are very easy.

$$
2 A M \geq 2 A M^{\prime}=2 A I+I B^{\prime}+I C^{\prime}=2 A I+I B \sin \frac{C}{2}+I C \sin \frac{B}{2}
$$

Therefore we have to prove:

$$
\begin{equation*}
\sum\left(I B \sin \frac{C}{2}+I C \sin \frac{B}{2}\right) \geq I A+I B+I C . \tag{7}
\end{equation*}
$$

We know that $r=I A \sin \frac{A}{2}, r=I B \sin \frac{B}{2}, r=I C \sin \frac{C}{2}$. After the subtitution in the above inequality we find a trigonometric inequality, but it is quite difficult to prove it. The proof of (7) can follow easily from (5) because (7) is equivalent to the following

$$
\left(\overrightarrow{I A} \sin \frac{A}{2}+\overrightarrow{I B} \sin \frac{B}{2}+\overrightarrow{I C} \sin \frac{C}{2}\right)(\overrightarrow{I A}+\overrightarrow{I B}+\overrightarrow{I C}) \leq 0
$$

## References

1. O.Bottema, R.Z.Djordjevic, R.R.Janic, D.S.Mitrinovic, P.M.Vasic, Geometric Inequalities, Wolters-Noordhoff
