Inequalities for a simplex and a triangle.

G.Tsintsifas

Problem .

Let $S_{n}=A_{1} A_{2} . . . A_{n+1}$ be a n-simplex in E^{n} and M is an interior point. The line $A_{i} M$ intersects the opposite face, that is the simplex $S_{n-1}^{i}=A_{1} A_{2} \ldots A_{i-1} A_{i+1} \ldots A_{n+1}$ at the point A_{i}^{\prime} and the simplex $S_{n-1}^{\prime i}=A_{1}^{\prime} A_{2}^{\prime} \ldots A_{i-1}^{\prime} A_{i+1}^{\prime} \ldots A_{n+1}^{\prime}$ at the point $A_{i}^{\prime \prime}$. Prove:

$$
\begin{equation*}
\sum_{1}^{n+1} \frac{A_{i} A_{i}^{\prime \prime}}{A_{i}^{\prime} A_{i}^{\prime \prime}} \geq n^{2}-1 \tag{1}
\end{equation*}
$$

Proof.

We denote, as useally, the vector of position of a point Q by $\overrightarrow{O Q}=Q$. Therefore the point M expressed by its barycentric coordinates, is:

$$
M=\sum_{1}^{n+1} q_{i} A_{i} \text { where } \sum_{1}^{n+1} q_{i}=1, \quad q_{i} \geq 0
$$

So, we have:

$$
M=q_{i} A_{i}+\left(1-q_{i}\right) \frac{\sum_{\substack{j=1 \\ j \neq i}}^{n+1} q_{j} A_{j}}{1-q_{i}}
$$

That is:

$$
\begin{equation*}
A_{i}^{\prime}=\frac{\sum_{\substack{j=1 \\ j \neq i}}^{n+1} q_{j} A_{j}}{1-q_{i}} \tag{2}
\end{equation*}
$$

Similarly:
$M=\sum_{1}^{n+1} m_{i} A_{i}^{\prime}, \quad \sum_{i}^{n+1}=1, \quad m_{i} \geq 0$, or

$$
M=\sum_{i=1}^{n+1} m_{i}\left[\sum_{\substack{j-1 \\ j \neq i}}^{n+1} \frac{q_{j} A_{j}}{1-q_{i}}\right]=\sum_{i=1}^{n+1} q_{i} A_{i},
$$

So we take: $m_{i}=\frac{1-q_{i}}{n}$. Indeed, we have:

$$
\frac{M A_{i}^{\prime \prime}}{A_{i}^{\prime} A_{i}^{\prime \prime}}=m_{i},(a) \quad \frac{M A_{i}^{\prime}}{A_{i} A_{i}^{\prime}}=q_{i},(b)
$$

from (b) follows that:

$$
\begin{gathered}
\frac{A_{i}^{\prime} A_{i}^{\prime \prime}-M A_{i}^{\prime \prime}}{A_{i} A_{i}^{\prime \prime}+A_{i}^{\prime} A_{i}^{\prime \prime}}=q_{i} \Rightarrow \\
\frac{1-\frac{M A_{i}^{\prime \prime}}{A_{i}^{\prime} A_{i}^{\prime \prime}}}{1+\frac{A_{i} A_{i}^{\prime}}{A_{i}^{\prime} A_{i}^{\prime \prime}}}=q_{i} \Rightarrow \\
\frac{1-m_{i}}{1+\frac{A_{i} A_{i}^{\prime \prime}}{A_{i}^{\prime} A_{i}^{\prime \prime}}}=q_{i} \Rightarrow \\
\frac{A_{i} A_{i}^{\prime \prime}}{A_{i}^{\prime} A_{i}^{\prime \prime}}=\frac{1-m_{i}-q_{i}}{q_{i}}
\end{gathered}
$$

but we proved in problem 1 that $m_{i}=\frac{1-q_{i}}{n}$, therefore

$$
\frac{A_{i} A_{i}^{\prime \prime}}{A_{i}^{\prime} A_{i}^{\prime \prime}}=\frac{(n-1)\left(1-q_{i}\right)}{n q_{i}}=\frac{(n-1)}{n}\left[\frac{q_{1}+q_{2}+. . q_{i-1}+q_{i+1} . . q_{n+1}}{q_{i}}\right]
$$

and finally,

$$
\sum_{1}^{n+1} \frac{A_{i} A_{i}^{\prime \prime}}{A_{i}^{\prime} A_{i}^{\prime \prime}}=\frac{n-1}{n} \sum_{i \geq j}^{1, n+1}\left[\frac{q_{i}}{q_{j}}+\frac{q_{j}}{q_{i}}\right] \geq n^{2}-1 .
$$

The above is the conjecture 7.19 page 338 in [1] (for a triangle).
Some applications for a triangle.
For $\mathrm{n}=3$, that is for the triangle $A_{1} A_{2} A_{3}$ using the above formulas we can obtain some remarkable results.
1.The points $A_{1}^{\prime}, A_{1}^{\prime \prime}-M, A_{1}$ are Harmonic range, that is: $\frac{M A_{1}^{\prime \prime}}{M A_{1}^{\prime \prime}}=\frac{A_{1} A_{1}^{\prime \prime}}{A_{!} A_{1}^{\prime}}$ (c) Proof
From (a) follows.

$$
m_{1}=\frac{M A_{1}^{\prime \prime}}{M A_{1}^{\prime \prime}+M A_{1}^{\prime}}
$$

or equivalently for (c)

$$
m_{1}=\frac{A_{1} A_{1}^{\prime \prime}}{A_{1} A_{1}^{\prime \prime}+A_{1} A_{1}^{\prime}}
$$

$$
\begin{gathered}
\Rightarrow m_{1}=\frac{1}{1+\frac{A_{1} A_{1}^{\prime}}{A_{1} A_{1}^{\prime \prime}}=\frac{1}{1+\frac{A_{1} A_{1}^{\prime \prime}+A_{1}^{\prime \prime} A_{1}^{\prime}}{A_{1} A_{1}^{\prime \prime}}}} \begin{array}{c}
\Rightarrow m_{1}=\frac{1}{2+\frac{q_{1}}{1-m_{1}-q_{1}}}=1-m_{1}-q_{1}=1-\frac{1-q_{1}}{2}-q_{1}=\frac{1-q_{1}}{2}
\end{array} .=\frac{1}{2}
\end{gathered}
$$

That is according (a),(b) we conclude that $A_{1}^{\prime}, A_{1}^{\prime \prime}-M, A_{1}$ are Harmonic range.
2.

$$
\sum_{(\text {cyclic })}\left[A_{2} A_{1}^{\prime \prime} A_{3}\right]^{2} \leq\left[A_{1} A_{2} A_{3}\right]^{2}
$$

Proof.

Descarte's theorem for the harmonic ranges is:

$$
\begin{gathered}
\frac{2}{A_{1}^{\prime} A_{1}^{\prime \prime}}=\frac{1}{A_{1}^{\prime} M}+\frac{1}{A_{1} A_{1}^{\prime}} \\
\Rightarrow A_{1}^{\prime} A_{1}^{\prime \prime}=\frac{2 M A_{1}^{\prime} \cdot A_{1} A_{1}^{\prime}}{M A_{1}^{\prime}+A_{1} A_{1}^{\prime}} \leq \sqrt{M A_{1}^{\prime} \cdot A_{1} A_{1}^{\prime}} \\
\Rightarrow \frac{A_{1}^{\prime} A_{1}^{\prime \prime}}{M A_{1}^{\prime}} \leq \frac{A_{1} A_{1}^{\prime}}{A_{1}^{\prime} A_{1}^{\prime \prime}} \Rightarrow \frac{\left(A_{2} A_{1}^{\prime \prime} A_{3}\right)}{\left(A_{2} M A_{3}\right)} \leq \frac{\left(A_{1} A_{2} A_{3}\right)}{\left(A_{2} A_{1}^{\prime \prime} A_{3}\right)} \\
\left(A_{2} A_{1}^{\prime \prime} A_{3}\right)^{2} \leq\left(A_{1} A_{2} A_{3}\right) \cdot\left(A_{2} M A_{3}\right)
\end{gathered}
$$

and finally

$$
\sum_{(\text {cyclic) }}\left(A_{2} A_{1}^{\prime \prime} A_{3}\right)^{2} \leq\left(A_{1} A_{2} A_{3}\right)^{2}
$$

3.

$$
\sum_{(\text {cyclic })}\left(A_{2}^{\prime} A_{1} A_{3}^{\prime}\right) \geq 3\left(A_{1}^{\prime} A_{2}^{\prime} A_{3}^{\prime}\right)
$$

Proof.

From (1), fof $n=3$ follows.

$$
\begin{gathered}
\sum_{(\text {cyclic })} \frac{A_{1} A_{1}^{\prime \prime}}{A_{1}^{\prime \prime} A_{1}^{\prime}} \geq 3 \Rightarrow \sum_{(\text {cyclic) }} \frac{\left(A_{2}^{\prime} A_{1} A_{3}^{\prime}\right)}{\left(A_{1}^{\prime} A_{2}^{\prime} A_{3}^{\prime}\right)} \geq 3 \\
\Rightarrow \frac{\left(A_{1} A_{2} A_{3}\right)-\left(A_{1}^{\prime} A_{2}^{\prime} A_{3}^{\prime}\right)}{\left(A_{1}^{\prime} A_{2}^{\prime} A_{3}^{\prime}\right)} \geq 3
\end{gathered}
$$

or

$$
\sum_{(\text {cyclic })}\left(A_{2}^{\prime} A_{1} A_{3}^{\prime}\right) \geq 3\left(A_{1}^{\prime} A_{2}^{\prime} A_{3}^{\prime}\right)
$$

and from the above

$$
\begin{gathered}
\max \left[\left(A_{2}^{\prime} A_{1} A_{3}^{\prime}\right),\left(A_{3}^{\prime} A_{2} A_{1}^{\prime}\right),\left(A_{1}^{\prime} A_{3} A_{2}^{\prime}\right)\right] \geq\left(A_{1}^{\prime \prime} A_{2}^{\prime} A_{3}^{\prime}\right) \\
\left(A_{1} A_{2} A_{3}\right) \geq 4\left(A_{1}^{\prime} A_{2}^{\prime} A_{3}^{\prime}\right)
\end{gathered}
$$

References.

1. Recent Advances in Geometric Inequalities, D.S.Mitrinovic, J.E.Pecaric, and V.Volonec, Kluwer Academic Publishers.
