Some Geometrc and Analytic Inequalities.

G.Tsintsifas

Introduction.

The most part of this paper are results obtained since 1983. The starting point was the following Geometric problem.

Problem 1.

Let $S_{n}=A_{1} A_{2} A_{n+1}$ be a n-simplex in E^{n} and M is an interior point. The line $A_{i} M$ intersects the opposite face, that is the simplex $S_{n-1}^{i}=A_{1} A_{2} \ldots A_{i-1} A_{i+1} \ldots A_{n+1}$ at the point A_{i}^{\prime} and the simplex $S_{n-1}^{\prime i}=A_{1}^{\prime} A_{2}^{\prime} \ldots A_{i-1}^{\prime} A_{i+1}^{\prime} \ldots A_{n+1}^{\prime}$ at the point $A_{i}^{\prime \prime}$. We denote by $V, V^{\prime}, V^{\prime \prime}$ the volumes of the simplices $S_{n}, S_{n}^{\prime}=$ $A_{1}^{\prime} A_{2}^{\prime} \ldots \quad A_{n+1}^{\prime}$ and $S_{n}^{\prime \prime}=A_{1}^{\prime \prime} A_{2}^{\prime \prime} \ldots \quad A_{n+1}^{\prime \prime}$. Then it holds:

$$
\begin{equation*}
V \cdot V^{\prime} \geq\left(V^{\prime}\right)^{2} \tag{1}
\end{equation*}
$$

Problem 2.

Working with barycentric coordinates we were lead to the following inequality.
For $x_{1}, x_{2}, \ldots . x_{n}$ positive numbers and $S=x_{1}+x_{2}+.$. .. x_{n} it holds:

$$
\begin{equation*}
\prod_{i=1}^{n}\left(S-x_{i}\right)^{2} \geq \prod_{i=1}^{n} x_{i}\left[(n-2) S+x_{i}\right] \tag{2}
\end{equation*}
$$

Problem 3.

We also found and some others interesting inequalities.

$$
\begin{equation*}
x_{1} x_{2} \ldots x_{n}\left[\frac{S}{n}\right]^{n} \leq\left[\frac{S=x_{1}}{n-1}\right]^{2}\left[\frac{S-x_{2}}{n-1}\right]^{2} \ldots\left[\frac{S-x_{n}}{n-1}\right]^{2} \tag{3}
\end{equation*}
$$

Problem 4.

For the convex function $f(x)$ holds:

$$
\begin{equation*}
\sum_{i=1}^{n} f\left(x_{i}\right)+n f\left(\frac{S}{n}\right) \geq 2 f \sum_{i=1}^{n}\left(\frac{S-x_{i}}{n-1}\right) \tag{4}
\end{equation*}
$$

Problem 5. The following is very interesting but I do not have a proof for the general case (a)

$$
T_{r}=\prod_{i_{1}<i_{2}<\ldots<i_{n-r}}^{1 \leq i_{t} \leq n-1}\left[\frac{x_{i 1}+x_{i 2}+\ldots .+x_{i(n-r)}}{n-r}\right]^{\frac{1}{\left(n_{n-r}\right)}(5)}
$$

Prove:

$$
\begin{gather*}
(a): \quad T_{r}^{2} \geq T_{r-1} T_{r+1} \tag{6}\\
\text { (b) }: \quad T_{r} \geq T_{r+1} \tag{7}
\end{gather*}
$$

The main tools we have used are:
(1). The inequality of Popoviciu, see [4], and
(2). the Majorization theory, see [2],[3] and [4].

The inequality of Popoviciu is:

$$
\begin{align*}
& \binom{n-2}{k-2}\left[\frac{n-k}{k-1} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)+\left(\sum_{i=1}^{n} p_{i}\right) f\left(\frac{\sum_{i}^{n} p_{i} x_{i}}{\sum_{i}^{n} p_{i}}\right)\right] \tag{8}\\
\geq & \sum\left(p_{i 1}+p_{i 1}+\ldots+p_{i k}\right) f\left(\frac{p_{i 1} x_{i 1}+p_{i 2} x_{i 2}+\ldots+p_{i k} x_{i k}}{p_{i 1}+p_{i 2}+\ldots+p_{i k}}\right) .
\end{align*}
$$

For $1 \leq i_{1} \leq i_{2} \leq \ldots \leq i_{k} \leq n, p_{i} \geq 0, f(x)$ is convex function.
The basis of the Majorization method is the excelent theorem of Hardy-Littlewood-Polya.
Let $x=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right], \quad y=\left[\begin{array}{llll}y_{1} & y_{2} & \ldots & y_{n}\end{array}\right]$ be two points in E^{n} so that:

$$
\begin{array}{ll}
x_{1} \leq x_{2} \leq \ldots & \leq x_{n} \\
y_{1} \leq y_{2} \leq \ldots & \leq y_{n}
\end{array}
$$

. The following conditions are equivalent:
(1). There is a bistohastic matrix Λ so that:

$$
y^{T}=\Lambda x^{T}
$$

(2). There is a convex function f, so that:

$$
\sum_{1}^{n} f\left(x_{i}\right) \geq \sum_{1}^{n} f\left(y_{i}\right)
$$

(3).

$$
\begin{aligned}
& x_{1} \leq y_{1} \\
& x_{1}+x_{2} \leq y_{1}+y_{2} \\
& x_{1}+x_{2}+x_{3} \leq y_{1}+y_{2}+y_{3} \\
& \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
& x_{1}+x_{2}+\ldots x_{n-1} \leq y_{1}+y_{2}+\ldots . y_{n-1} \\
& x_{1}+x_{2}+\ldots . x_{n}=y_{1}+y_{2}+\ldots . y_{n} .
\end{aligned}
$$

The condition (3) is denoted by: $\left(x_{1}, x_{2}, \ldots . x_{n}\right) \prec\left(y_{1}, y_{2}, \ldots y_{n}\right)$. See for the proof in [2].
$3(\mathrm{a})$. The majorization theorem is equivalent to the following. If

$$
\begin{aligned}
& x_{1} \geq x_{2} \geq \ldots \quad \geq x_{n} \\
& y_{1} \geq y_{2} \leq \ldots
\end{aligned}
$$

. and $\left(x_{1}, x_{2}, \ldots . x_{n}\right) \succ\left(y_{1}, y_{2}, \ldots . y_{n}\right)$. Then it holds (2).

Proofs

We start the proof of (1).
We denote, as useally, the vector of position of a point Q by $\overrightarrow{O Q}=Q$. Therefore the point M expressed by its barycentric coordinates, is:

$$
M=\sum_{1}^{n+1} q_{i} A_{i} \text { where } \sum_{1}^{n+1} q_{i}=1, \quad q_{i} \geq 0
$$

So, we have:

$$
M=q_{i} A_{i}+\left(1-q_{i}\right) \frac{\sum_{\substack{j=1 \\ j \neq i}}^{n+1} q_{j} A_{j}}{1-q_{i}}
$$

That is:

$$
\begin{equation*}
A_{i}^{\prime}=\frac{\sum_{\substack{j=1 \\ j \neq i}}^{n+1} q_{j} A_{j}}{1-q_{i}} \tag{9}
\end{equation*}
$$

Similarly:
$M=\sum_{1}^{n+1} m_{i} A_{i}^{\prime}, \quad \sum_{i}^{n+1}=1, \quad m_{i} \geq 0$, or

$$
M=\sum_{i=1}^{n+1} m_{i}\left[\sum_{\substack{j-1 \\ j \neq i}}^{n+1} \frac{q_{j} A_{j}}{1-q_{i}}\right]=\sum_{i=1}^{n+1} q_{i} A_{i},
$$

So we take: $m_{i}=\frac{1-q_{i}}{n}$. From (9) we see that:

$$
V^{\prime}=|\Lambda| V
$$

where Λ is the matrix of the transfomation the simplex S_{n} to S_{n}^{\prime}. After the calculations we take:

$$
\begin{equation*}
V^{\prime}=n \prod_{i=1}^{n+1} \frac{q_{i}}{1-q_{i}} V \tag{10}
\end{equation*}
$$

Similarly we take:

$$
\begin{equation*}
V^{\prime \prime}=n^{2} \prod_{i=1}^{n+1} \frac{q_{i}}{n-\left(1-q_{i}\right)} V \tag{11}
\end{equation*}
$$

So, we easily see that we are leading to the inequality (2).
The proof of the inequality (2)
By the A.M-G.M inequality follows:

$$
\begin{equation*}
S-x_{i} \geq(n-1) \prod_{\substack{j=1 \\ j \neq i}}^{n} x_{j}^{\frac{1}{n-1}} \tag{12}
\end{equation*}
$$

From (12) we have:

$$
\prod_{1}^{n}\left(S-x_{i}\right) \geq(n-1)^{n} \prod_{1}^{n} x_{i}
$$

or,

$$
\begin{gather*}
\frac{\prod_{1}^{n}\left(S-x_{i}\right)}{[(n-1) S]^{n}} \geq \frac{\prod_{1}^{n} x_{i}}{\left[\sum_{1}^{n} x_{i}\right]^{n}} \\
\frac{\prod_{1}^{n}\left(S-x_{i}\right)}{\left[\sum_{1}^{n}\left(S-x_{i}\right)\right]^{n}} \geq \frac{\prod_{1}^{n} x_{i}}{\left[\sum_{1}^{n} x_{i}\right]^{n}} \tag{13}
\end{gather*}
$$

From (13), we take:

$$
\begin{equation*}
\frac{\prod_{\substack{i=1 \\ i \neq j}}^{n}\left(S-x_{i}\right)}{\left[\sum_{\substack{i=1 \\ i \neq j}}^{n}\left(S-x_{i}\right)\right]^{n}} \geq \frac{\prod_{1}^{n} x_{i}}{\left[\sum_{\substack{i=1 \\ i \neq j}}^{n} x_{i}\right]^{n}} \tag{14}
\end{equation*}
$$

and from the above (14) we go to the next

$$
\prod_{i=1}^{n} \frac{\prod_{\substack{j=1 \\ j \neq i}}^{n}\left(S-x_{j}\right)}{\left[(n-2) S+x_{i}\right]^{n-1}} \geq \prod_{i=1}^{n} \frac{\prod_{\substack{j=1 \\ j \neq i}}^{n} x_{j}}{\left[S-x_{i}\right]^{n}}
$$

because of

$$
(n-2) S+x_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{n}\left(S-x_{j}\right) .
$$

Therefore

$$
\frac{\prod_{1}^{n}\left(S-x_{i}\right)^{n}}{\prod_{1}^{n}\left[(n-2) S+x_{i}\right]^{n}} \geq \frac{\prod_{1}^{n} x_{i}^{n-1}}{\prod_{1}^{n}\left[S-x_{i}\right]^{n-1}}
$$

and finally:

$$
\prod_{1}^{n}\left(S-x_{i}\right)^{2} \geq \prod_{1}^{n} x_{i}\left[(n-2) S+x_{i}\right]
$$

Proof of the inequality (4)

Follows from Popoviciu inequality (3).
Indeed, we have for $k=n-1$, and $p_{i}=1$

$$
\begin{aligned}
f\left(x_{1}\right) & +f\left(x_{2}\right)+\ldots f\left(x_{n}\right)+n(n-2) f\left(\frac{x_{1}+x_{2}+\ldots x_{n}}{n}\right) \\
& \geq(n-1)\left[f\left(\frac{S-x_{1}}{n-1}\right)+\ldots . .+f\left(\frac{S-x_{n}}{n-1}\right)\right]
\end{aligned}
$$

Therefore we only have to prove:

$$
(n-1) \sum f\left(\frac{S-x_{i}}{n-1}\right)-n(n-2) f\left(\frac{S}{n}\right) \geq 2 \sum f\left(\frac{S-x_{i}}{n-1}\right)-n f\left(\frac{S}{n}\right)
$$

or equivalently

$$
\sum f\left(\frac{S-x_{i}}{n-1}\right) \geq n f\left(\frac{S}{n}\right)
$$

which follows directly from the Jensen inequality, that is:

$$
\frac{1}{n} \sum f\left(\frac{S-x_{i}}{n-1}\right) \geq f\left(\sum \frac{S-x_{i}}{n(n-1)}\right)=f\left(\frac{S}{n}\right)
$$

The proof of the inequality (3)

It follows from (4), taking as $y=f(x)$ the convex function $y=-L n x$. That is:

$$
L n x_{1}+\operatorname{Ln} x_{2}+\ldots . L n x_{n}+n \operatorname{Ln} \frac{S}{n} \leq \sum \operatorname{Ln}\left(\frac{S-x_{i}}{n-1}\right)^{2}
$$

or,

$$
x_{1} x_{2} \ldots x_{n}\left(\frac{S}{n}\right)^{n} \leq \prod_{1}^{n}\left(\frac{s-x_{i}}{n-1}\right)^{2} .
$$

It is worthwile to notice that (2),(3) and (4) can be proven using the majorization method. Also Popoviciu inequality for $k=n-2, p_{i}=1$ gives:

$$
\begin{equation*}
\sum_{1}^{n} f\left(x_{i}\right)+\frac{n(n-3)}{2} f\left(\frac{S}{n}\right) \geq \sum_{\substack{i>j \\ i, j}}^{1, n} f\left(\frac{S-x_{i}-x_{j}}{n-2}\right) \tag{15}
\end{equation*}
$$

and the above (15) leads to the next

$$
\begin{equation*}
x_{1} x_{2} \ldots x_{n}\left(\frac{S}{n}\right)^{\frac{n(n-3)}{2}} \leq \prod_{\substack{i>j \\ i, j}}^{1, n}\left(\frac{S-x_{i}-x_{j}}{n-2}\right) . \tag{16}
\end{equation*}
$$

For (5) it is easy to prove that $T_{k} \geq T_{k+1}$.
Also $T^{2} \geq T_{0} T_{2}$, or equivalently

$$
\left[\frac{\left(x_{1}+x_{2}\right)}{2} \frac{\left(x_{2}+x_{3}\right)}{2} \frac{\left(x_{3}+x_{1}\right)}{2}\right]^{2} \geq x_{!} x_{2} x 3\left[\frac{x_{1}+x_{2}+x_{3}}{3}\right]^{3}(17)
$$

A remarkable function

The function

$$
f(x)=\frac{g(x)}{w(x)}
$$

where

$$
\begin{gathered}
g(x)=\left(x+x_{1}\right)^{a_{1}}\left(x+x_{2}^{a_{2}} \ldots\left(x+x_{n}\right)^{a_{n}}\right. \\
w(x)=\left[a_{1}\left(x+x_{1}\right)+a_{2}\left(x+x_{2}\right)+\ldots a_{n}\left(x+x_{n}\right)\right]^{s_{a}}
\end{gathered}
$$

$s_{a}=a_{1}+a_{2}+\ldots . . a_{n}, \quad x_{i}, a_{i} \in \Re^{+}$
We see that $\frac{g^{\prime}(x)}{g(x)}=\sum \frac{x_{i}}{x+x_{i}}$, so we will have:

$$
f^{\prime}(x)=\frac{g(x)}{[w(x)]^{s_{a}-1}}\left[\left(\sum \frac{a_{i}}{a+x_{i}}\right)\left(\sum a_{i}\left(x+x_{i}\right)\right)-s_{a}^{2}\right]
$$

From Gauchy-Schwarz inequality, we see that for $x \geq 0, f^{\prime}(x)>0$.
Therefore $f(x)$ is increasing it is easy to see $f(x)<1$ that is $f(x)$ is bounded above, hence $f(x)$ has a limit:

$$
x \rightarrow \infty: \quad f(x) \rightarrow \frac{1}{s_{a}^{s_{a}}}
$$

hence,

$$
\frac{1}{s_{a}^{s_{a}}} \geq f(x)=\frac{g(x)}{w(x)} \geq \frac{g(0)}{w(0)}
$$

or

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+\ldots . .+a_{n} x_{n} \geq s a \sqrt[s a]{x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}}} \tag{18}
\end{equation*}
$$

For $a_{1}=a_{2}=\ldots . a_{n}=1$, (18) is the well known A.M.-G.M. inequality. Many remarkable inequalities follow from (18), e.g.

$$
\left[\frac{a x+b y}{a+b}\right]^{a+b} \geq x^{a} y^{b}
$$

or, the Young's inequality, for $\frac{1}{a}+\frac{1}{b}=1$

$$
\frac{x^{a}}{a}+\frac{y^{b}}{b} \geq x y
$$

The function $f_{1}(x)$
where

$$
f_{1}(x)=\frac{g_{1}(x)}{w_{1}(x)}, g_{1}(x)=\prod_{1}^{n}\left(x-x_{i}\right), w_{1}(x)=\left[\sum_{1}^{n}\left(x-x_{i}\right)\right]^{n},
$$

$x=\sum_{1}^{n} x_{i}, \quad x_{i} \in \Re^{+}, S=\sum_{1}^{n} x_{i}$.
Working as previously we see that $f_{1}(x)$ is increasing. We also can prove that $f_{1}(x) \geq f_{1}(0)$. That is because:

$$
S-x_{j} \geq(n-1)\left[\prod_{\substack{i \neq j \\ i=1}}^{n} x_{i}\right]^{\frac{1}{n-1}}
$$

We multiplay the $n-1$ above inequalities and we take:

$$
\prod_{1}^{n}\left(S-x_{i}\right) \geq(n-1)^{n} \prod_{1}^{n} x_{i}
$$

or,

$$
\begin{gathered}
\frac{\prod_{1}^{n}\left(S-x_{i}\right)}{(n-1)^{n} S^{n}} \geq \frac{\prod_{1}^{n} x_{i}}{S^{n}} \\
\frac{\prod_{1}^{n}\left(S-x_{i}\right)}{\left[\sum_{1}^{n}\left(S-x_{i}\right)\right]^{n}} \geq \frac{\prod_{1}^{n} x_{i}}{S^{n}}
\end{gathered}
$$

An application of (19) is the next. We take:

$$
\begin{gathered}
x_{1}=-(n-2) a_{1}+a_{2}+\ldots . a_{n}>0 \\
x_{2}=a_{1}-(n-2) a_{2}+\ldots . . a_{n}>0 \\
\ldots \ldots \quad \ldots \ldots . \\
x_{n}=a_{1}+a_{2}+\ldots . .\left(n_{2}\right) a_{n}>0
\end{gathered}
$$

from (19) follows:

$$
a_{1} a_{2} \ldots . a_{n} \geq \prod_{1}^{n}\left[-(n-2) a_{1}+a_{2}+\ldots . a_{n}\right]
$$

the well known inequality.

The majorization method

We will prove the inequality (17) as an example of the majorization method. We will prove:

$$
\left[\frac{\left(a_{1}+a_{2}\right)}{2} \frac{\left(a_{2}+a_{3}\right)}{2} \frac{\left(a_{3}+a_{1}\right)}{2}\right]^{2} \geq a_{1} a_{2} a_{3}\left[\frac{a_{1}+a_{2}+a_{3}}{3}\right]^{3}
$$

For $a_{1} \leq a_{2} \leq a_{3}$ positive numbers.
Let it be

$$
\begin{aligned}
& x_{1}=a_{1}, x_{2}=a_{2}, x_{3}=x_{4}=x_{5}=\frac{x_{1}+x_{2}+x_{3}}{3}, x_{6}=a_{3} \\
& y_{1}=y_{2}=\frac{a_{1}+a_{2}}{2}, y_{3}=y_{4}=\frac{a_{1}+a_{3}}{2}, y_{5}=y_{6}=\frac{a_{2}+a_{3}}{2}
\end{aligned}
$$

We suppose that

$$
x_{1} \leq x_{23}=x_{4}=x_{5} \leq x_{6}
$$

We also see that

$$
y_{1}=y_{2} \leq y_{3}=y_{4} \leq y_{5}=y_{6}
$$

It is no difficult to se that
$x_{1} \leq y_{1}$
$x_{1}+x_{2} \leq y_{1}+y_{2}$
$\mathrm{x}_{1}+\ldots .+x_{5} \leq y_{1}+\ldots . y_{5}$

$$
x_{1}+\ldots \ldots \ldots+x_{6}=y_{1}+\ldots \ldots \ldots+y_{6}
$$

Therefore, taking in mind, that Lnx is concave, according the Majorization theorem (17) true.
(The case $x_{1} \leq \frac{x_{1}+x_{2}+x_{3}}{3} 3 \leq x_{2} \leq x_{3}$ is similar).
Another example for a Geometric inequality.
Let A, B, C be the angles of the triangle ABC . We suppose that $A \leq B \leq C$. Obviously,

$$
A \leq \pi / 3, \quad A+B \leq \pi / 3+\pi / 3, \quad A+B+C=\pi
$$

Therefore, $(A, B, C) \prec(\pi / 3, \pi / 3, \pi / 3)$, also $(0,0, \pi) \prec(A, B, C)$.
The function $y=\sin x$ is concave, hence:

$$
0<\sin A+\sin B+\sin C \leq 3 \sin \pi / 3=3 \sqrt{3} / 2
$$

The function $y=\operatorname{Ln} \sin x$ is concave, hence:

$$
0<\sin A \sin B \sin C \leq(\sin \pi / 3)^{3}
$$

Remark.

Using the solution of the problem 1, we can prove the conjecture (for a simplex) of [1] 7.14 page 338 .

$$
\sum_{1}^{n+1} \frac{A_{i} A_{i}^{\prime \prime}}{A_{i}^{\prime} A_{i}^{\prime \prime}} \geq n^{2}-1
$$

Indeed, we have:

$$
\frac{M A_{i}^{\prime \prime}}{A_{i}^{\prime} A_{i}^{\prime \prime}}=m_{i},(a) \quad \frac{M A_{i}^{\prime}}{A_{i} A_{i}^{\prime}}=q_{i},(b)
$$

from (b) follows that:

$$
\begin{gathered}
\frac{A_{i}^{\prime} A_{i}^{\prime \prime}-M A_{i}^{\prime \prime}}{A_{i} A_{i}^{\prime \prime}+A_{i}^{\prime} A_{i}^{\prime \prime}}=q_{i} \Rightarrow \\
\frac{1-\frac{M A_{i}^{\prime \prime}}{A_{i}^{\prime} A_{i}^{\prime \prime}}}{1+\frac{A_{i}^{\prime \prime}}{A_{i}^{\prime} A_{i}^{\prime \prime}}}=q_{i} \Rightarrow
\end{gathered}
$$

$$
\begin{gathered}
\frac{1-m_{i}}{1+\frac{A_{i} A_{i}^{\prime \prime}}{A_{i}^{\prime} A_{i}^{\prime \prime}}}=q_{i} \Rightarrow \\
\frac{A_{i} A_{i}^{\prime \prime}}{A_{i}^{\prime} A_{i}^{\prime \prime}}=\frac{1-m_{i}-q_{i}}{q_{i}}
\end{gathered}
$$

but we proved in problem 1 that $m_{i}=\frac{1-q_{i}}{n}$, therefore

$$
\frac{A_{i} A_{i}^{\prime \prime}}{A_{i}^{\prime} A_{i}^{\prime \prime}}=\frac{(n-1)\left(1-q_{i}\right)}{n q_{i}}=\frac{(n-1)}{n}\left[\frac{q_{1}+q_{2}+. . q_{i-1}+q_{i+1} . . q_{n+1}}{q_{i}}\right]
$$

and finally,

$$
\sum_{1}^{n+1} \frac{A_{i} A_{i}^{\prime \prime}}{A_{i}^{\prime} A_{i}^{\prime \prime}}=\frac{n-1}{n} \sum_{i \geq j}^{1, n+1}\left[\frac{q_{i}}{q_{j}}+\frac{q_{j}}{q_{i}}\right] \geq n^{2}-1
$$

The above in [1] is for a triangle.

References

1. Recent Advances in Geometric Inequalities, D.S.Mitrinovic, J.E.Pecaric and V.Volenec, Klower Academic Publishers.
2. Espaces Topologiques Fonctions Multivoques, Claude Berge, Dunod, 1966.
3. Inequalities, Hardy, Littlewood, Polya, Cambridge University Press.
4. Analytic Inequalities, D.S.Mitrinovic, Springer.
