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Introduction.

The most part of this paper are results obtained since 1983. The start-
ing point was the following Geometric problem.
Problem 1.
Let Sn = A1A2.. ..An+1 be a n-simplex in En and M is an interior point. The
line AiM intersects the opposite face, that is the simplex Si

n−1 = A1A2...Ai−1Ai+1....An+1

at the point A′
i and the simplex S ′i

n−1 = A′
1A

′
2...A

′
i−1A

′
i+1... A′

n+1 at the
point A′′

i . We denote by V, V ′, V ′′ the volumes of the simplices Sn, S ′
n =

A′
1A

′
2... A′

n+1 and S ′′
n = A′′

1A
′′
2... A′′

n+1. Then it holds:

V · V ′ ≥ (V ′)2. (1)

Problem 2.
Working with barycentric coordinates we were lead to the following inequal-
ity.
For x1, x2, .... xn positive numbers and S = x1 + x2 + .. ..xn it holds:

n∏
i=1

(S − xi)
2 ≥

n∏
i=1

xi[(n− 2)S + xi] (2)

Problem 3.
We also found and some others interesting inequalities.

x1x2....xn

[
S

n

]n

≤
[
S = x1

n− 1

]2[
S − x2

n− 1

]2

....

[
S − xn

n− 1

]2

. (3)

Problem 4.
For the convex function f(x) holds:

n∑
i=1

f(xi) + nf
(S

n

)
≥ 2f

n∑
i=1

(S − xi

n− 1

)
(4)
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Problem 5.The following is very interesting but I do not have a proof for
the general case (a)

Tr =
1≤it≤n−1∏

i1<i2<...<in−r

[
xi1 + xi2 + .... + xi(n−r)

n− r

] 1

( n
n−r)

(5)

Prove:
(a) : T 2

r ≥ Tr−1Tr+1 (6)

(b) : Tr ≥ Tr+1 (7)

The main tools we have used are:
(1). The inequality of Popoviciu, see [4], and
(2). the Majorization theory, see [2],[3] and [4].
The inequality of Popoviciu is:(

n− 2

k − 2

)[
n− k

k − 1

n∑
i=1

pif(xi) +
( n∑

i=1

pi

)
f

(∑n
i pixi∑n
i pi

)]
(8)

≥
∑

(pi1 + pi1 + ... + pik)f

(
pi1xi1 + pi2xi2 + ... + pikxik

pi1 + pi2 + ... + pik

)
.

For 1 ≤ i1 ≤ i2 ≤ .... ≤ ik ≤ n, pi ≥ 0, f(x) is convex function.
The basis of the Majorization method is the excelent theorem of Hardy-
Littlewood-Polya.
Let x = [x1 x2 .... xn], y = [y1 y2 .... yn] be two points in En so that:

x1 ≤ x2 ≤ .... ≤ xn

y1 ≤ y2 ≤ .... ≤ yn

. The following conditions are equivalent:
(1). There is a bistohastic matrix Λ so that:

yT = ΛxT

(2). There is a convex function f , so that:

n∑
1

f(xi) ≥
n∑
1

f(yi).
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(3).
x1 ≤ y1

x1 + x2 ≤ y1 + y2

x1 + x2 + x3 ≤ y1 + y2 + y3

...........................

x1 + x2 + ....xn−1 ≤ y1 + y2 + ....yn−1

x1 + x2 + ....xn = y1 + y2 + ....yn.

The condition (3) is denoted by: (x1, x2, ....xn) ≺ (y1, y2, ....yn).
See for the proof in [2].
3(a). The majorization theorem is equivalent to the following. If

x1 ≥ x2 ≥ .... ≥ xn

y1 ≥ y2 ≤ .... ≥ yn

. and (x1, x2, ....xn) � (y1, y2, ....yn). Then it holds (2).

Proofs
We start the proof of (1).

We denote, as useally, the vector of position of a point Q by ~OQ = Q. There-
fore the point M expressed by its barycentric coordinates , is:

M =
n+1∑

1

qiAi where
n+1∑

1

qi = 1, qi ≥ 0.

So, we have:

M = qiAi + (1− qi)

∑n+1
j=1
j 6=i

qjAj

1− qi

That is:

A′
i =

∑n+1
j=1
j 6=i

qjAj

1− qi

(9)

Similarly:
M =

∑n+1
1 miA

′
i,
∑n+1

i = 1, mi ≥ 0, or

M =
n+1∑
i=1

mi

[
n+1∑
j−1
j 6=i

qjAj

1− qi

]
=

n+1∑
i=1

qiAi,
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So we take: mi = 1−qi

n
. From (9) we see that:

V ′ = |Λ|V

where Λ is the matrix of the transfomation the simplex Sn to S ′
n. After the

calculations we take:

V ′ = n
n+1∏
i=1

qi

1− qi

V (10)

Similarly we take:

V ′′ = n2
n+1∏
i=1

qi

n− (1− qi)
V (11)

So, we easily see that we are leading to the inequality (2).
The proof of the inequality (2)
By the A.M-G.M inequality follows:

S − xi ≥ (n− 1)
n∏

j=1
j 6=i

x
1

n−1

j (12)

From (12) we have:
n∏
1

(S − xi) ≥ (n− 1)n
n∏
1

xi

or, ∏n
1 (S − xi)

[(n− 1)S]n
≥

∏n
1 xi

[
∑n

1 xi]n∏n
1 (S − xi)

[
∑n

1 (S − xi)]n
≥

∏n
1 xi

[
∑n

1 xi]n
(13)

From (13),we take: ∏n
i=1
i6=j

(S − xi)[∑n
i=1
i6=j

(S − xi)

]n ≥
∏n

1 xi[∑n
i=1
i6=j

xi

]n (14)

and from the above (14) we go to the next

n∏
i=1

∏n
j=1
j 6=i

(S − xj)

[(n− 2)S + xi]n−1
≥

n∏
i=1

∏n
j=1
j 6=i

xj

[S − xi]n
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because of

(n− 2)S + xi =
n∑

j=1
j 6=i

(S − xj).

Therefore ∏n
1 (S − xi)

n∏n
1

[
(n− 2)S + xi

]n ≥ ∏n
1 xn−1

i∏n
1

[
S − xi

]n−1

and finally:
n∏
1

(S − xi)
2 ≥

n∏
1

xi[(n− 2)S + xi].

Proof of the inequality (4)
Follows from Popoviciu inequality (3).
Indeed, we have for k = n− 1, and pi = 1

f(x1) + f(x2) + ....f(xn) + n(n− 2)f
(x1 + x2 + ....xn

n

)

≥ (n− 1)

[
f
(S − x1

n− 1

)
+ ..... + f

(S − xn

n− 1

)]
Therefore we only have to prove:

(n− 1)
∑

f
(S − xi

n− 1

)
− n(n− 2)f

(S

n

)
≥ 2

∑
f
(S − xi

n− 1

)
− nf

(S

n

)
or equivalently ∑

f
(S − xi

n− 1

)
≥ nf

(S

n

)
which follows directly from the Jensen inequality, that is:

1

n

∑
f
(S − xi

n− 1

)
≥ f

(∑ S − xi

n(n− 1)

)
= f

(S

n

)
.

The proof of the inequality (3)
It follows from (4),taking as y = f(x) the convex function y = −Lnx. That
is:

Lnx1 + Lnx2 + ....Lnxn + nLn
S

n
≤
∑

Ln
(S − xi

n− 1

)2
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or,

x1x2....xn

(S

n

)n
≤

n∏
1

(s− xi

n− 1

)2
.

It is worthwile to notice that (2),(3) and (4) can be proven using the ma-
jorization method. Also Popoviciu inequality for k = n− 2, pi = 1 gives:

n∑
1

f(xi) +
n(n− 3)

2
f
(S

n

)
≥

1,n∑
i>j
i,j

f
(S − xi − xj

n− 2

)
(15)

and the above (15) leads to the next

x1x2....xn

(S

n

)n(n−3)
2 ≤

1,n∏
i>j
i,j

(S − xi − xj

n− 2

)
. (16)

For (5) it is easy to prove that Tk ≥ Tk+1.
Also T 2 ≥ T0T2, or equivalently[(x1 + x2)

2

(x2 + x3)

2

(x3 + x1)

2

]2
≥ x!x2x3

[x1 + x2 + x3

3

]3
(17)

A remarkable function
The function

f(x) =
g(x)

w(x)

where
g(x) = (x + x1)

a1(x + xa2
2 ....(x + xn)an

w(x) = [a1(x + x1) + a2(x + x2) + ....an(x + xn)]sa

sa = a1 + a2 + .....an, xi, ai ∈ <+

We see that g′(x)
g(x)

=
∑ xi

x+xi
, so we will have:

f ′(x) =
g(x)

[w(x)]sa−1

[
(
∑ ai

a + xi

)(
∑

ai(x + xi))− s2
a

]
From Gauchy-Schwarz inequality, we see that for x ≥ 0, f ′(x) > 0.
Therefore f(x) is increasing it is easy to see f(x) < 1 that is f(x) is bounded
above, hence f(x) has a limit:

x →∞ : f(x) → 1

ssa
a
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hence,
1

ssa
a

≥ f(x) =
g(x)

w(x)
≥ g(0)

w(0)

or
a1x1 + a2x2 + ..... + anxn ≥ sa

sa

√
xa1

1 xa2
2 ...xan

n (18)

For a1 = a2 = .....an = 1, (18) is the well known A.M.-G.M. inequality.
Many remarkable inequalities follow from (18), e.g.

[ax + by

a + b

]a+b
≥ xayb

or, the Young’s inequality, for 1
a

+ 1
b

= 1

xa

a
+

yb

b
≥ xy

The function f1(x)
where

f1(x) =
g1(x)

w1(x)
, g1(x) =

n∏
1

(x− xi), w1(x) =
[ n∑

1

(x− xi)
]n

,

x =
∑n

1 xi, xi ∈ <+, S =
∑n

1 xi.
Working as previously we see that f1(x) is increasing. We also can prove
that f1(x) ≥ f1(0). That is because:

S − xj ≥ (n− 1)
[ n∏

i6=j
i=1

xi

] 1
n−1

We multiplay the n-1 above inequalities and we take:

n∏
1

(S − xi) ≥ (n− 1)n
n∏
1

xi

or, ∏n
1 (S − xi)

(n− 1)nSn
≥
∏n

1 xi

Sn∏n
1 (S − xi)[∑n
1 (S − xi)

]n ≥ ∏n
1 xi

Sn
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An application of (19) is the next. We take:

x1 = −(n− 2)a1 + a2 + ....an > 0

x2 = a1 − (n− 2)a2 + .....an > 0

..... ........

xn = a1 + a2 + .....(n2)an > 0

from (19) follows:

a1a2....an ≥
n∏
1

[− (n− 2)a1 + a2 + ....an]

the well known inequality.

The majorization method
We will prove the inequality (17) as an example of the majorization method.
We will prove:

[(a1 + a2)

2

(a2 + a3)

2

(a3 + a1)

2

]2
≥ a1a2a3

[a1 + a2 + a3

3

]3
For a1 ≤ a2 ≤ a3 positive numbers.
Let it be

x1 = a1, x2 = a2, x3 = x4 = x5 =
x1 + x2 + x3

3
, x6 = a3

y1 = y2 =
a1 + a2

2
, y3 = y4 =

a1 + a3

2
, y5 = y6 =

a2 + a3

2

We suppose that
x1 ≤ x23 = x4 = x5 ≤ x6

We also see that
y1 = y2 ≤ y3 = y4 ≤ y5 = y6

It is no difficult to se that
x1 ≤ y1

x1 + x2 ≤ y1 + y2

........................
x1 + .... + x5 ≤ y1 + ....y5
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x1 + ........ + x6 = y1 + ......... + y6

Therefore, taking in mind, that Lnx is concave, according the Majorization
theorem (17) true.
(The case x1 ≤ x1+x2+x3

3
3 ≤ x2 ≤ x3 is similar).

Another example for a Geometric inequality.
Let A, B, C be the angles of the triangle ABC. We suppose that A ≤ B ≤ C.
Obviously,

A ≤ π/3, A + B ≤ π/3 + π/3, A + B + C = π

Therefore, (A, B, C) ≺ (π/3, π/3, π/3), also (0, 0, π) ≺ (A, B, C).
The function y = sin x is concave, hence:

0 < sin A + sin B + sinC ≤ 3 sin π/3 = 3
√

3/2

The function y = Ln sin x is concave, hence:

0 < sin A sin B sin C ≤ (sin π/3)3.

Remark.
Using the solution of the problem 1, we can prove the conjecture (for a sim-
plex) of [1] 7.14 page 338.

n+1∑
1

AiA
′′
i

A′
iA

′′
i

≥ n2 − 1.

Indeed, we have:

MA′′
i

A′
iA

′′
i

= mi, (a)
MA′

i

AiA′
i

= qi, (b)

from (b) follows that:
A′

iA
′′
i −MA′′

i

AiA′′
i + A′

iA
′′
i

= qi ⇒

1− MA′′
i

A′
iA

′′
i

1 +
AiA′′

i

A′
iA

′′
i

= qi ⇒
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1−mi

1 +
AiA′′

i

A′
iA

′′
i

= qi ⇒

AiA
′′
i

A′
iA

′′
i

=
1−mi − qi

qi

but we proved in problem 1 that mi = 1−qi

n
, therefore

AiA
′′
i

A′
iA

′′
i

=
(n− 1)(1− qi)

nqi

=
(n− 1)

n

[q1 + q2 + ..qi−1 + qi+1..qn+1

qi

]
and finally,

n+1∑
1

AiA
′′
i

A′
iA

′′
i

=
n− 1

n

1,n+1∑
i≥j

[ qi

qj

+
qj

qi

]
≥ n2 − 1.

The above in [1] is for a triangle.
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