An inequality in the Cartesian plane

G.Tsintsifas

Problem

Let xOy the Cartesian plane and the four points A(1,0), B(-1,0), C(0,1), D(0,-1). Prove that for every point P, so that $OP \ge 1$ it holds:

$$|PA - PB| + |PC - PD| \ge 2$$

where $|\vec{MN}|$ is denoted by MN.

Proof.

We consider the circle g=(O,1) and A(1,0), B(-1,0), C(0,1), D(0-1) the intersections on the Ox and Oy axes and x_1, y_1 the Cartesian coordinates of the point $P' = OP \cap g$.

We drow the perpendiculars $P'P_1$ to AB and $P'P_2$ to CD. Let E be the intersection of the lines P'D and AB. The triangles DOE and $P'P_2C$ are similar, hence it follows:

$$OD \cdot CP_2 = OE \cdot P'P_2 = OE \cdot OP_1. \tag{1}$$

From the triangle AP'B follows:

$$BP^{\prime 2} - AP^{\prime 2} = 2AB \cdot OP_1 \tag{2}$$

$$\frac{BP'}{AP'} = \frac{BE}{AE} \tag{3}$$

From (3) we take

$$\frac{BP'}{AP'} = \frac{1+OE}{1-OE}$$

and then

$$OE = \frac{BP' - AP'}{AP' + BP'} \tag{4}$$

From (1), (2) and (4) we easily take:

$$OE \cdot OP_1 = \frac{(BP' - AP')^2}{4}$$
 (5)

From (1),(5) follows:

$$1 - x_1 = \frac{(BP' - AP')^2}{4}$$

and then

 $|BP' - AP'| = 2\sqrt{1 - x_1}$

and similarly

$$|CP' - DP'| = 2\sqrt{1 - y_1}$$

and by the equivalence

$$(1-x_1)(1-y_1) \ge 0 \iff \sqrt{1-x_1} + \sqrt{1-y_1} \ge 1$$

follows that

$$|P'A - P'B| + |P'C - P'D| \ge 2.$$
 (6)

Suppose now that BP > AP. We take a the point A_1 symmetric of the point A relative to the line OP'. The quadrilateral PA_1BA is trapezion therefore, it is very simple to see that: $PB + PA_1 > P'B + PA_1$ or PB + P'A > PA + P'B and finally

$$PB - PA > P'B - P'A$$

Similarly

$$PC - PD > P'C - P'D$$

therefore, from (6) we take:

$$|PA - PB| + |PC - PD| \ge 2$$