An inequality in the Cartesian plane

G.Tsintsifas

Problem

Let xOy the Cartesian plane and the four points $\mathrm{A}(1,0), \mathrm{B}(-1,0), \mathrm{C}(0,1)$, $\mathrm{D}(0,-1)$. Prove that for every point P , so that $O P \geq 1$ it holds:

$$
|P A-P B|+|P C-P D| \geq 2
$$

where $|\overrightarrow{M N}|$ is denoted by $M N$.

Proof.

We consider the circle $\mathrm{g}=(\mathrm{O}, 1)$ and $\mathrm{A}(1,0), \mathrm{B}(-1,0), \mathrm{C}(0,1), \mathrm{D}(0-1)$ the intersections on the $O x$ and $O y$ axes and x_{1}, y_{1} the Cartesian coordinates of the point $P^{\prime}=O P \cap g$.
We drow the perpendiculars $P^{\prime} P_{1}$ to $A B$ and $P^{\prime} P_{2}$ to $C D$. Let E be the intersection of the lines $P^{\prime} D$ and $A B$. The triangles $D O E$ and $P^{\prime} P_{2} C$ are similar, hence it follows:

$$
\begin{equation*}
O D \cdot C P_{2}=O E \cdot P^{\prime} P_{2}=O E \cdot O P_{1} \tag{1}
\end{equation*}
$$

From the triangle $A P^{\prime} B$ follows:

$$
\begin{align*}
B P^{\prime 2}-A P^{\prime 2} & =2 A B \cdot O P_{1} \tag{2}\\
\frac{B P^{\prime}}{A P^{\prime}} & =\frac{B E}{A E} \tag{3}
\end{align*}
$$

From (3) we take

$$
\frac{B P^{\prime}}{A P^{\prime}}=\frac{1+O E}{1-O E}
$$

and then

$$
\begin{equation*}
O E=\frac{B P^{\prime}-A P^{\prime}}{A P^{\prime}+B P^{\prime}} \tag{4}
\end{equation*}
$$

From (1), (2) and (4) we easily take:

$$
\begin{equation*}
O E \cdot O P_{1}=\frac{\left(B P^{\prime}-A P^{\prime}\right)^{2}}{4} \tag{5}
\end{equation*}
$$

From (1),(5) follows:

$$
1-x_{1}=\frac{\left(B P^{\prime}-A P^{\prime}\right)^{2}}{4}
$$

and then

$$
\left|B P^{\prime}-A P^{\prime}\right|=2 \sqrt{1-x_{1}}
$$

and similarly

$$
\left|C P^{\prime}-D P^{\prime}\right|=2 \sqrt{1-y_{1}}
$$

and by the equivalence

$$
\left(1-x_{1}\right)\left(1-y_{1}\right) \geq 0 \Leftrightarrow \sqrt{1-x_{1}}+\sqrt{1-y_{1}} \geq 1
$$

follows that

$$
\begin{equation*}
\left|P^{\prime} A-P^{\prime} B\right|+\left|P^{\prime} C-P^{\prime} D\right| \geq 2 \tag{6}
\end{equation*}
$$

Suppose now that $B P>A P$. We take a the point A_{1} symmetric of the point A relative to the line OP'. The quadrilateral $P A_{1} B A$ is trapezion therefore, it is very simple to see that: $P B+P A_{1}>P^{\prime} B+P A_{1}$ or $P B+P^{\prime} A>P A+P^{\prime} B$ and finally

$$
P B-P A>P^{\prime} B-P^{\prime} A
$$

Similarly

$$
P C-P D>P^{\prime} C-P^{\prime} D
$$

therefore, from (6) we take:

$$
|P A-P B|+|P C-P D| \geq 2
$$

