The applications of Leibniz's formula in Geometry.

G. A. Tsintsifas
Thessaloniki, Greece

Introduction

It is well known from Mechanics, that the polar moment of inertia of a system of weighted points is minimum about the centroid. This can be expressed geometrically and very interesting results can be obtained. In fact, the following formula is known.
Let S be a set of points $A_{1}, A_{2}, \ldots . A_{n}$ in E^{d} with masses $m_{1}, m_{2}, \ldots m_{n}$ respectively and G their centroid. For every point P holds:

$$
\begin{equation*}
m\left[\sum_{i=1}^{n} m_{i}\left|\overrightarrow{P A_{i}}\right|^{2}\right]=m^{2}|\overrightarrow{P Q}|^{2}+\sum_{i \geq j}^{1, n} m_{i} m_{j}\left|\overrightarrow{A_{i} A_{j}}\right|^{2} \tag{1}
\end{equation*}
$$

where Q is the centroid defined by:

$$
\overrightarrow{O G}=\frac{\sum_{i}^{n} m_{i} \overrightarrow{O A}}{m}, \quad m=\sum_{i=1}^{n} m_{i} \neq 0, \quad m_{i} \in R .
$$

Formula (1) was known to Lagrange, but it seems that first has been used by Leibniz, so we call it, the formula of Leibniz..
The geometric significance of the formula (1) is connected with the use of the barycentric coordinates. Indeed, suppose that $A_{1}, A_{2}, . . A_{n}$ be a (n1)simplex in $E^{(n-1)}$ and $\left(m_{1} / m, m_{2} / m, . . m_{n} / m\right)$ the barycentric coordinates of the point Q, that is

$$
\overrightarrow{O G}=\frac{\sum_{i}^{n} m_{i} \overrightarrow{O A}}{m}, \quad m=\sum_{i=1}^{n} m_{i} \neq 0, \quad m_{i} \in R
$$

The point Q can be considered as the centroid of the points $A_{1}, A_{2}, . . A_{n}$ with masses $m_{1} / m, m_{2} / m, . . m_{n} / m$ and is easily understood that (1) has geometric significance.

From the formula (1) we can take the very interesting geometric inequality, below:

$$
\begin{equation*}
m\left[\sum_{i=1}^{n} m_{i}|\overrightarrow{P A}|^{2}\right] \geq \sum_{i \geq j}^{1, n} m_{i} m_{j}\left|\overrightarrow{A_{i} A_{j}}\right|^{2}, \tag{2}
\end{equation*}
$$

The equality holds, if and only if $P=Q$.
Several Mathematicians have used the inequality (2) in proving geometrc inequalities, however, I think, that nobody has deeply investegated the large number of possibilities of the Leibniz's formula. In this paper we will try to discribe only a small part of the various and strong possibilities of this formula.
The paper is divided into four parts. In the first part we give the proof of the Leibniz's formula and a generalization. In the second part we will use it for the proof of some geometric theorems. In the third part we give some interesting quadritic forms and the last part, includes a large number of geometric inequalities.

1. Proof of the Leibniz's fopmula.

It is easily understood that

$$
\begin{gathered}
m \overrightarrow{P Q}=\sum_{i=1}^{n} m_{i} \overrightarrow{P A_{i}} \\
\text { or } \overrightarrow{P Q}\left[m \overrightarrow{P Q}-\sum_{i=1}^{n} m_{i} \overrightarrow{P A}_{i}\right]=0 \\
\text { or, } m \overrightarrow{P Q}^{2}=\overrightarrow{P Q} \sum_{i=1}^{n} m_{i} \overrightarrow{P A}_{i}+\overrightarrow{P Q} \sum_{i=1}^{n} m_{i} \overrightarrow{Q A} \vec{A}_{i} \text {, because of } \sum_{i=1}^{n} m_{i} \overrightarrow{Q A}_{i}=\overrightarrow{0} \\
\text { that is } m \overrightarrow{P Q}^{2}=\sum_{i=1}^{n} m_{i}\left(\overrightarrow{P A}_{i}+\overrightarrow{Q A} \vec{A}_{i}\right) \overrightarrow{P Q} \\
\text { or } m \overrightarrow{P Q}^{2}=\sum_{i=1}^{n} m_{i}\left(\overrightarrow{P A}_{i}+\overrightarrow{Q A}_{i}\right)\left(\overrightarrow{P A}_{i}-\overrightarrow{Q A}_{i}\right) \\
\text { or } m \overrightarrow{P Q}^{2}=\sum_{i=1}^{n} m_{i} \overrightarrow{P A}_{i}^{2}-\sum_{i=1}^{n} m_{i} \overrightarrow{Q A}_{i}^{2}
\end{gathered}
$$

Or,

$$
\begin{equation*}
\sum_{i=1}^{n} m_{i} \overrightarrow{P A}_{i}^{2}=m \overrightarrow{P Q}^{2}+\sum_{i=1}^{n} m_{i} \overrightarrow{Q A}_{i}^{2} \tag{3}
\end{equation*}
$$

Several authors are reffered to (3) as the formula of Leibniz. From (3) we can easily take (1).
Indeed

$$
\begin{gathered}
\sum_{i, j}^{1, n} m_{i} m_{j}{\overrightarrow{A_{i} A}}_{j}^{2}=\sum_{i, j}^{1, n} m_{i} m_{j}\left(O \overrightarrow{A A}_{i}^{2}+O \overrightarrow{A A}_{j}^{2}\right)-2 \overrightarrow{O A_{i} O \overrightarrow{A A}_{j}=} \\
=2 m \sum_{i=1}^{n} m_{i} O \overrightarrow{O A}_{i}^{2}-2 \sum_{i, j}^{1, n} m_{i} m_{j} O \overrightarrow{O A} O \overrightarrow{A A}_{j}
\end{gathered}
$$

Or

$$
\begin{equation*}
\sum_{i, j}^{1, n} m_{i} m_{j}{\overrightarrow{A_{i}}}_{j}^{2}=2 m \sum_{i=1}^{n} m_{i} \overrightarrow{O A}{ }_{i}^{2}-2\left[\sum_{i=1}^{n} \overrightarrow{O A}_{i}\right]^{2} \tag{4}
\end{equation*}
$$

Formula (4) for $O=Q$ gives:

$$
\begin{equation*}
\sum_{i \geq j}^{1, n} m_{i} m_{j}{\overrightarrow{A_{i} A}}_{j}^{2}=m \sum_{i=1}^{n} m_{i} \overrightarrow{Q A}_{i}^{2} \tag{5}
\end{equation*}
$$

Consequently from (3) and (5) we have Leibniz's formula (1), see [6].
An extension of Leibniz's formula
We consider a second point P^{\prime}. The formula (1) can be extended as follows i

$$
\begin{equation*}
m\left[\sum_{i=1}^{n} m_{i} \overrightarrow{P A} \cdot \overrightarrow{P A} \vec{A}_{j}\right]=m^{2} \overrightarrow{P G} \cdot \overrightarrow{P^{\prime} G}+\sum_{i \geq j}^{1, n} m_{i} m_{j}{\overrightarrow{A_{i} A}}_{j}{ }^{2} \tag{6}
\end{equation*}
$$

Proof

For every point P, P^{\prime} we have:

$$
\begin{aligned}
& m \sum_{i=1}^{n} m_{i} \overrightarrow{P A}_{i} \\
& \\
& =m^{2} \overrightarrow{P Q}^{2}+\sum_{i \geq j}^{1, n} m_{i} m_{j}{\overrightarrow{A_{i}} \vec{A}_{j}}^{2} \\
& m \sum_{i=1}^{n} m_{i}{\overrightarrow{P^{\prime} A_{i}}}^{2}=m^{2}{\overrightarrow{P^{\prime}} Q}^{2} \sum_{i \geq j}^{1, n} m_{i} m_{j}{\overrightarrow{A_{i}}}_{j}{ }^{2}
\end{aligned}
$$

We add up the above inequalities and we substitute

$$
\overrightarrow{P A}_{i}^{2}+{\overrightarrow{P^{\prime}} A_{i}}^{2}=\left(\overrightarrow{P A_{i}}-\overrightarrow{P^{\prime} A_{i}}\right)^{2}+2 \overrightarrow{P A_{i}} \cdot \overrightarrow{P^{\prime} A_{i}}=\overrightarrow{P P^{\prime}}+2 \overrightarrow{P A_{i}} \cdot \overrightarrow{P^{\prime} A_{i}}
$$

We will have:

$$
2 m \sum_{i=1}^{n} m_{i} \overrightarrow{P A_{i}} \cdot \overrightarrow{P^{\prime} A_{i}}=m^{2}\left(\overrightarrow{P G}^{2}+{\overrightarrow{P G^{\prime}}}^{2}-{\overrightarrow{P P^{\prime}}}^{2}\right)+2 \sum_{i \geq j}^{1, n} m_{i} m_{j} \vec{A}_{i} \vec{A}_{j}^{2}
$$

and finally, taking into account that

$$
\overrightarrow{P G}^{2}+{\overrightarrow{P^{\prime} G}}^{2}-{\overrightarrow{P P^{\prime}}}^{2}=2 \overrightarrow{P G} \cdot \overrightarrow{P^{\prime} G},
$$

we have (5).
It is worthwhile to point out here that for a smplex $s^{n-1}=A_{1} A_{2} \ldots A_{n}$ and a point Q with barycentric coordinates $m_{1}, m_{2}, . . m_{n}, \quad \sum_{i=1}^{n} m_{i}=1$ and two points P, P^{\prime} so that $\angle P Q P^{\prime} \leq \pi / 2$, holds:

$$
\begin{equation*}
\sum_{i=1}^{n} m_{i}|\overrightarrow{P A}|\left|\overrightarrow{P^{\prime} A_{i}}\right| \geq \sum_{i \geq j}^{1, n} m_{i} m_{j}\left|\overrightarrow{A_{i} A_{j}}\right|^{2} \tag{7}
\end{equation*}
$$

The barycentric coordinates and their geometric significance.
It is useful for the paper to explain clearly the geometric significance of the barycentric coordinates of a point Q with respect to a triangle $A_{1} A_{2} A_{3}$. Let m_{1}, m_{2}, m_{3} the barycentric coordinates of a point Q, that is:

$$
\overrightarrow{O Q}=m_{1} O \vec{A}_{1}+m_{2} O \vec{A}_{2}+m_{3} O \overrightarrow{A A}_{3}, \quad \text { and } \quad m_{1}+m_{2}+m_{3}=1
$$

We suppose that:

$$
A_{1}^{\prime}=A_{1} Q \cap A_{1} A_{2}, \quad A_{2}^{\prime}=A_{2} Q \cap A_{3} A_{1}, \quad A_{3}^{\prime}=A_{3} Q \cap A_{1} A_{2}
$$

and $\overline{F_{1}}, \overline{F_{2}}, \overline{F_{3}}$ the oriented areas of the triangles $Q A_{2} A_{3}, Q A_{3} A_{1}, Q A_{1} A_{2}$. The formula (7) can be written:

$$
\overrightarrow{O Q}=m_{1} O \overrightarrow{A A}_{1}+\left(m_{2}+m_{3}\right) \frac{m_{2} O \overrightarrow{A A}_{2}+m_{3} \overrightarrow{O A}_{3}}{m_{2}+m_{3}}
$$

From the above follows:

$$
\begin{align*}
& O \overrightarrow{A_{1}^{\prime}}=\frac{m_{2} O \vec{A}_{2}+m_{3} O \vec{A}_{3}}{m_{2}+m_{3}} \\
& \text { Therefore } \overline{\overline{A_{2} A_{1}^{\prime}}} \overline{\overline{A_{1}^{\prime} A_{3}}}=\frac{m_{3}}{m_{2}} \tag{8}
\end{align*}
$$

$$
\begin{equation*}
\text { and from (8) follows } \frac{m_{3}}{m_{2}}=\frac{\overline{F_{3}}}{\overline{F_{2}}} \tag{9}
\end{equation*}
$$

Let \bar{F} be the oriented area of the triangle $A_{1} A_{2} A_{3}$. From the above we easily see that $m_{1}=\overline{F_{1}} / \bar{F}, \quad m_{2}=\overline{F_{2}} / \bar{F}$, and $m_{3}=\overline{F_{3}} / \bar{f}$.
In the n-dimensional Eucledian space, $n+1$ indepentant points, are the vertices of a simplex usually denoted by $s^{n}=A_{1} A_{2} \ldots . A_{n-1}$. A point Q with barycentric coordinates $m_{1}, m_{2}, \ldots . m_{n+1}, m_{1}+m_{2}+.$. .. $m_{n+1}=1$ is:

$$
\begin{gathered}
Q=\sum_{i=1}^{n} m_{i} A_{i}, \text { or } Q=m_{1} A_{1}+\left[\sum_{i=2}^{n+1} m_{i}\right] \frac{\sum_{i=2}^{n+1} m_{i} A_{i}}{\sum_{i=2}^{n+1} m_{i}}= \\
=m_{1}+\left[\sum_{i=2}^{n+1} m_{i}\right] Q_{1} \text { hence } \frac{\overline{Q Q_{1}}}{\overline{A_{1} Q}}=\frac{m_{1}}{1-m_{1}} \\
\text { Also } \frac{\overline{Q Q_{1}}}{\overline{A_{1} Q_{1}}}=m_{1}=\frac{V\left(Q A_{2} A_{3} \ldots A_{n+1}\right)}{V\left(A_{1} A_{2} \ldots A_{n+1}\right)}
\end{gathered}
$$

By $V(W)$ is denoted the volume of the body W.
The face opposite the vertex A_{i} of the n simplex $s^{n}=A_{1} A_{2} \ldots A_{n-1}$ is a $(n-1)$ simplex and it is denoted by $s_{i}^{(n-1)}$. It is useful to point out that the volume of the simplex with vertex Q and opposite face $s_{i}^{(n-1)}$ is positive if the altitudes from the vertices Q and A_{i} to the opposite face $s_{i}^{(n-1)}$ are in the same direction.

2. Propositions from the Geometry.

(a). Euler's formula $I O^{2}=R^{2}-2 R r$.

It is easy to see that the incenter I of a triangle $A B C$ has as barycentric coordinates,

$$
a / 2 s, b / 2 s, c / 2 s
$$

where a, b, c are the sides of the triangle $A B C$ and $2 s=a+b+c$
From the Leibniz's formula follows:

$$
2 s\left(a P A^{2}+b P B^{2}+c P C^{2}\right)=4 s^{2} \cdot I P^{2}+2 s a b c
$$

or

$$
\begin{equation*}
a P A^{2}+b P B^{2}+c P C^{2}=2 s \cdot I P^{2}+a b c . \tag{10}
\end{equation*}
$$

Now, setting $P=O$ the circumcenter, we take:

$$
R^{2} \cdot 2 s=2 s \cdot I O^{2}+a b c
$$

and easily

$$
I O^{2}=R^{2}-2 R r
$$

Similarly, we can prove the formulas for the excenters I_{a}, I_{b}, I_{c} that is $I_{a} O^{2}=$ $R^{2}+2 R r_{a}$ etc., as well as the well known formulas about the segments which join the centroid G the orthocenter H, the incenter I and the circumcenter O, like

$$
O H^{2}=9 R^{2}-\sum a^{2}
$$

or

$$
18 s \cdot G I^{2}=4 s(a b+b c+c a)-\sum a^{3}-15 a b c
$$

and from those,follow very interesting inequalities, like the inequality below

$$
\begin{equation*}
4 s(a b+b c+c a) \geq \sum a^{3}+15 a b c \tag{11}
\end{equation*}
$$

(b). The area of the pedal triangle.

Let Q be a point of the plane of the triangle $A B C$ and Q_{1}, Q_{2}, Q_{3} its projections and q_{1}, q_{2}, q_{3} its distances from the sides respectively. Denoting by $(\overline{L M N})$ the oriented area, we have:

$$
\frac{\left(\overline{Q_{2} Q Q_{3}}\right)}{(\overline{A B C})}=\frac{q_{2} q_{3}}{b c}
$$

and easily follows:

$$
\overline{\left(Q_{1} Q_{2} Q_{3}\right)}=\frac{\overline{(A B C)}}{4 R^{2}}\left[m_{2} m_{3} a^{2}+m_{3} m_{1} b^{2}+m_{1} m_{2} c^{2}\right]
$$

where m_{1}, m_{2}, m_{3} are the barycentric coordonates of the point Q.
Formula (1) for $P=O$ (the circumcenter) can be written

$$
R^{2}=O Q^{2}+m_{2} m_{3} a^{2}+m_{3} m_{1} b^{2}+m_{1} m_{2} c^{2}
$$

The above formulas give the well known formula for the area of the pedal triangle of the point Q.

$$
\begin{equation*}
\frac{\left(Q_{1} Q_{2} Q_{3}\right)}{(A B C)}=\frac{|\Delta(Q)|}{4 R^{2}} \tag{12}
\end{equation*}
$$

where by $\Delta(Q)$ we denote the power of the point Q.

Quadritic forms via the Leibniz's formula.

Suppose that $s^{(n)}=A_{0} A_{1} A_{2} \ldots A_{n}$ be a n-simplex in E^{n}. Formula (2) for $P=A_{0}$ can be written.

$$
\begin{equation*}
m \sum_{i=1}^{n} m_{i}{\overrightarrow{A_{0}}}_{i}^{2} \geq \sum_{i \geq j}^{1, n} m_{i} m_{j}{\overrightarrow{A_{i} A}}_{j}{ }^{2} \tag{13}
\end{equation*}
$$

we set, $m_{i}=x_{i}, \quad\left|\overrightarrow{A_{i} A_{j}}\right|=a_{i j}=a_{j i}$.
From (10), we take the no negative quadritic form Φ_{0},

$$
\begin{equation*}
\Phi_{0}=\sum_{i=1}^{n} a_{0 i}^{2} x_{i}^{2}+\sum_{i \geq j}^{1, n}\left(a_{0 i}^{2}+a_{0 j}^{2}-a_{i j}^{2}\right) x_{i} x_{j} \geq 0 \tag{14}
\end{equation*}
$$

From formula (1), setting $\left|\overrightarrow{P A}{ }_{i}\right|=R_{i}$, we take the no negative quadritic forme Φ.

$$
\begin{equation*}
\Phi=\sum_{i=1}^{n} R_{i}^{2} x_{i}^{2}+\sum_{i \geq j}^{1, n}\left(R_{i}^{2}+R_{j}^{2}-a_{I J}^{2}\right) x_{i} x_{j} \geq 0 \tag{15}
\end{equation*}
$$

We assume now that $m=\sum_{i=1}^{n} m_{i}=0$, From the formula (4) we take the remarkable no positive quadritic form Φ_{1}.

$$
\begin{equation*}
\Phi_{1}=\sum_{i, j}^{1, n} m_{i} m_{j} a_{i j}^{2} \leq 0 \tag{16}
\end{equation*}
$$

Formulae (14),(15) and (16) give interesting inequalities even for the two dimensional case. We will give some examples working with the formula (16).

Let $m_{1}=x_{2}-x_{3}, \quad m_{2}=x_{3}-x_{1}, \quad m_{3}=x_{1}=x_{2}, \quad x_{i}>0$.
From (16) we have:

$$
\begin{equation*}
\sum\left(x_{1}-x_{2}\right)\left(x_{!}-x_{2}\right) a^{2} \geq 0 \quad(\text { Schur's inequality }) . \tag{17}
\end{equation*}
$$

Also from (16) for $m_{1}=x_{1} x_{2}-x_{1} x_{3}$ (cyclicaly), we take.

$$
\begin{equation*}
\sum a^{2} x_{2}^{2} x_{3}^{2} \geq x_{1} x_{2} x_{3}\left[\sum a\left(x_{2}+x_{3}-x_{1}\right)\right] . \tag{18}
\end{equation*}
$$

From (17) we obtain

$$
\begin{equation*}
\sum x_{1}^{2} \geq 2 x_{2} x_{3} \cos A \tag{19}
\end{equation*}
$$

The inequality (19) leads us to very interesting results, e.g. setting $x_{1}=$ $1 / a, x_{2}=1 / b, x_{3}=1 / c$ we have:

$$
\begin{equation*}
\sum a^{5}+2 a b c \cdot s \geq \sum a^{3}(b+c) \tag{20}
\end{equation*}
$$

Now for $x_{1}=a, x_{2}=b, x_{3}=c$ we take:

$$
\begin{equation*}
\sum a^{3}+3 a b c \geq \sum a^{2}(b+c) \tag{21}
\end{equation*}
$$

for $x_{1} \sim a x_{1}, \quad x_{2} \sim b x_{2}$ and $x_{3} \sim c x_{3}$, take

$$
\begin{equation*}
x_{1} x_{2} x_{3}\left[\sum a^{3} x_{1}\right]+a b c\left[\sum x_{1}^{2} x_{2}^{2}\right] \geq x_{1} x_{2} x_{3}\left[\sum a^{2}\left(b x_{2}+c x_{3}\right)\right] \tag{22}
\end{equation*}
$$

From the formula (2), for the triangle $A B C$ we have

$$
\begin{equation*}
m \sum m_{1} P A^{2} \geq \sum m_{2} m_{3} a^{2} \tag{23}
\end{equation*}
$$

We set $P=O$, the circumcenter, and $m_{i}=x_{i}$. Easily we take:

$$
\begin{equation*}
\sum x_{i}^{2}+2 \sum x_{1} x_{2} \cos 2 A \geq 0 \tag{24}
\end{equation*}
$$

The well known quadritic form, see[3].

4. Geometric inequalities.

4.1 For the triangle $A B C$ and for $P=O$ (the circumcenter) formula (2) can be written:

$$
\begin{equation*}
R^{2} m^{2} \geq \sum m_{2} m_{3} a^{2} \tag{25}
\end{equation*}
$$

The equality holds for $Q=O$ where Q is the point with barycentic coordinates $m_{1} / m, \quad m_{2} / m, \quad m_{3} / m$. That is the equality holds, if and only if

$$
\frac{(B O C)}{m_{1}}=\frac{(C O A)}{m_{2}}=\frac{(A O B)}{m_{3}}
$$

or, after some calculations

$$
\begin{equation*}
a^{2}\left(b^{2}+c^{2}-c^{2}\right) / m_{1}=b^{2}\left(a^{2}+c^{2}-b^{2}\right) / m_{2}=c^{2}\left(a^{2}+b^{2}-c_{2}\right) / m_{3} \tag{26}
\end{equation*}
$$

Neuberg-Pedoe's inequality.
Let $A B C, A^{\prime} B^{\prime} C^{\prime}$ be two triangles, F, F^{\prime} their areas, and

$$
P=\sum a^{2}\left(a^{\prime 2}+b^{\prime 2}-a^{\prime 2}\right)
$$

We will show the well known Neuberg-Pedoe's inequality, that is:

$$
\begin{equation*}
P \geq 16 F \cdot F^{\prime} \tag{27}
\end{equation*}
$$

Indeed, we set $m_{!}=a^{2}\left(b^{\prime 2}+c^{\prime 2}-a^{\prime 2}\right)$, cyclicaly for m_{2}, m_{3} in (25) and immediately follows the Neuberg-Pedoe's inequality. The equality from (26).

Remark. From this point and for the next inequalities the equality case is left for the reader, except, possibly for some remarkable problems.
For $m_{1}=a, m_{2}=b, \quad m_{3}=c$, from (25), we take:

$$
\begin{equation*}
a+b+c \geq 4 F / R \tag{28}
\end{equation*}
$$

For $m_{1}=a^{2}, m_{2}+b^{2}, m_{3}=c^{2}$ from (25) we take:

$$
\begin{equation*}
a^{2}+b^{2}+c^{2} \geq 4 F \sqrt{3} \tag{29}
\end{equation*}
$$

For $m_{1}-b^{2} c^{2}, \quad m_{2}=c^{2} a^{2}, \quad m_{3}=a^{2} b^{2}$ and always from (25), we take:

$$
\begin{equation*}
\sum b^{2} c^{2} \geq 16 F^{2} \tag{30}
\end{equation*}
$$

For $m_{1}=a^{4}, \quad m_{2}=b^{4}, \quad m_{3}=c^{2}$ it follows that:

$$
\begin{equation*}
a^{4}+b^{4}+c^{4} \geq 16 F^{2} \tag{31}
\end{equation*}
$$

For $m_{1}=m_{2}=m_{3}=1$ it follows the well known inequality

$$
\begin{equation*}
9 R^{2} \geq a^{2}+b^{2}+c^{2} \tag{32}
\end{equation*}
$$

For two triangles $A B C, \quad A^{\prime} B^{\prime} C^{\prime}$ and for $m_{1}=a^{2} a^{\prime 2}, \quad m_{2}=b^{2} b^{\prime 2}, \quad m_{3}=$ $c^{2} c^{\prime 2}$, we have:

$$
\begin{equation*}
\sum a^{2} a^{\prime 2} \geq 16 F F^{\prime} \tag{33}
\end{equation*}
$$

We continue with the two triangles.
For $m_{1}=a^{2} / r_{b}^{\prime} r_{c}^{\prime}$ symmetrically m_{2}, m_{3} and $r_{a}, r_{b}, r_{c}, r_{a}^{\prime}, r_{b}^{\prime}, r_{c}^{\prime}$ the exradii. We take:

$$
\begin{equation*}
\sum \frac{a^{2}}{r_{b}^{\prime} r_{c}^{\prime}} \geq \frac{4 F}{F^{\prime}} \tag{34}
\end{equation*}
$$

For $m_{1}=a^{2} r_{a}^{\prime}$ and symmetrically for the others m

$$
\begin{equation*}
\sum a^{2} r_{a}^{\prime} \geq 4 F s^{\prime} \tag{35}
\end{equation*}
$$

For $m_{1}=a / a^{\prime}$ etc.

$$
\begin{equation*}
\sum \frac{a}{a^{\prime}} \geq \frac{23^{1 / 4}}{\sqrt{R R^{\prime}}} \frac{F^{3 / 4}}{F^{\prime 1 / 4}} \tag{36}
\end{equation*}
$$

For $m_{1}=\frac{a^{\prime}}{b^{\prime} c^{\prime}}$ etc.

$$
\begin{equation*}
\frac{9 R R^{\prime}}{4 F^{\prime}} \geq \frac{1}{\sqrt{3}}\left[\sum a / a^{\prime}\right] \tag{37}
\end{equation*}
$$

For

$$
m_{1}=\frac{a^{2} b^{\prime} c^{\prime}}{\left(a^{\prime}+b^{\prime}\right)\left(a^{\prime}+c^{\prime}\right)}
$$

symmetrically for m_{2}, m_{3}

$$
\begin{equation*}
\sum a^{2} b^{\prime} c^{\prime}\left(b^{\prime}+c^{\prime}\right) \geq 2^{5} 3^{1 / 2} F F^{\prime} R^{\prime} \tag{38}
\end{equation*}
$$

For $m_{1}=a x, \quad m_{2}=b y, \quad m_{3}=c z$ it follows that:

$$
\begin{equation*}
\left[\frac{a x+b y+c z}{4 F}\right]^{2} \geq \sum \frac{y z}{b c} \tag{39}
\end{equation*}
$$

For $m_{1}=a^{2} x, \quad m_{2}=b^{2} y, \quad m_{3}=c^{2} z$, we take:

$$
\begin{equation*}
\left[\frac{a^{2} x+b^{2} y+c^{2} z}{4 F}\right] \geq x y+y z+z x \tag{40}
\end{equation*}
$$

For $m_{1}=x, \quad m_{2}=y, \quad m_{3}=z$ we have:

$$
\begin{equation*}
R^{2}(x+y+z)^{2} \geq x y c^{2}+y z a^{2}+z x b^{2} \tag{41}
\end{equation*}
$$

M. Klamkin proved (39),(40),(41) in [3]. For $m_{1}=\frac{1}{b c}$ cyclically for m_{2}, m_{3} we have:

$$
\begin{equation*}
\sum \frac{1}{a b} \geq \frac{1}{R^{2}} \tag{42}
\end{equation*}
$$

We suppose that $m_{1}+m_{2}+m_{3}=0$, from (16) we have:

$$
\sum m_{2} m_{3} a^{2} \leq 0
$$

let now $m_{1}=(b-c) / r_{a}$ cyclically for m_{2}, m_{3}. It is easy to see $\sum \frac{b-c}{r_{a}}=0$. consequently, it follows

$$
\begin{equation*}
\sum \frac{(a-b)(a-c)}{r_{b} r_{c}} a^{2} \geq 0 \tag{43}
\end{equation*}
$$

For $m_{1}=r_{a} / b c$, cyclically for m_{2}, m_{3}. We take:

$$
\begin{equation*}
\left[\frac{R}{r}-\frac{1}{2}\right]^{2} \geq \sum \frac{r_{b} r_{c}}{b c} \tag{44}
\end{equation*}
$$

For $m_{1}=r_{b}+r_{c}, \quad m_{2}=r_{c}+r_{a}, \quad m_{3}=r_{a}+r_{b}$, we will have:

$$
\begin{equation*}
\frac{R(r+4 R)^{2}}{2(2 R-r)} \geq s^{2} \tag{45}
\end{equation*}
$$

this is a new r, R, s inequality. For $m_{1}=\left(r_{b}+r_{c}\right) / r_{a}$, cyclically for m_{2}, m_{3}, it follows that:

$$
\begin{equation*}
s^{2} \geq 10 R^{2}+\frac{3}{2} R r-2 \frac{R^{3}}{r} \tag{46}
\end{equation*}
$$

Another new r, R, s inequality.
4.2 The inequalities which follow are refered to the distances of a point P from the vertices of the triangle $A B C$
The formula (2) for the triangle $A B C$ can be written.

$$
\begin{equation*}
m \sum_{1} R_{1}^{2} \geq \sum m_{2} m_{3} a^{2} \tag{47}
\end{equation*}
$$

where $R_{1}=A P, \quad R_{2}=B P, \quad R_{3}=C P$, and $m_{1} / m, m_{2} / m, m_{3} / m$ the barycentri coordinates of the point Q.

For $m_{1}=a, m_{2}=b, m_{3}=c$ we take.

$$
\begin{equation*}
a R_{1}^{2}+b R_{2}^{2}+c R_{3}^{2} \geq a b c \tag{48}
\end{equation*}
$$

a well known inequality, see [4].
The equality holds if and only if P coincides with the point I (the incenter). M.S. Klamkin proved the inequality

$$
\begin{equation*}
a R_{2} R_{3}+b R_{3} R_{1}+c R_{3} R_{1} \geq a b c \tag{49}
\end{equation*}
$$

using an inversion $\left(P, k^{2}\right)$ see [4].
It is possible to obtain (49) directly from (47), setting $m_{1}=a / R_{1}, \quad m_{2}=$ $b / R_{2}, \quad m_{3}=c / R_{3}$, or $m_{1}=a R_{2} R_{3}$ etc.
Another nice inequality can be produced from (49) the following.

$$
\frac{R_{1}}{a}+\frac{R_{2}}{b}+\frac{R_{3}}{c} \geq \sqrt{3}
$$

A remarkable notice here is that the three last inequalities can be proved using identities of the complex plane eg. for (49)

$$
\sum\left(z_{1}-z_{2}\right)\left(z-z_{1}\right)\left(z-z_{2}\right)=\left(z_{1}-z_{2}\right)\left(z_{2}-z_{3}\right)\left(z_{3}-z_{1}\right)
$$

etc.
We denote by $l_{1}, l_{@}, l_{3}$ the barycentric coordinates of the point P and by $\rho_{1}, \rho_{2}, \rho_{3}$ the circumradii of the triangles $B P C, C P A, A P B$, (49) can be written.

$$
\begin{equation*}
l_{1} \rho_{1}+l_{2} \rho_{2}+l_{3} \rho_{3} \geq R \tag{49a}
\end{equation*}
$$

For $m_{1}=a^{2}, \quad m_{2}=b^{2}, \quad m_{3}=c^{2}$, we will have:

$$
\begin{equation*}
\sum(b+c) R_{1}^{2} \geq(a+b)(b+c)(c+a) / 4 \tag{50}
\end{equation*}
$$

For $m_{1}=b^{2} c^{2}$ cyclically for the others m, we take:

$$
\begin{equation*}
\sum b^{2} c^{2} R_{!}^{2} \geq a^{2} b^{2} c^{2} \tag{51}
\end{equation*}
$$

For $m_{1}=a(b+c)$ cyclically the m_{2}, m_{3}, we take:

$$
\begin{equation*}
\sum a(b+c) R_{1}^{2} \geq \frac{2 a b c}{3}(a+b+c) \tag{52}
\end{equation*}
$$

For $m_{1}=b c, m_{2}=c a, m_{3}=a b$, it follows that:

$$
\begin{equation*}
\sum b c R_{1}^{2} \geq a b c \cdot 2 s / 3 \tag{53}
\end{equation*}
$$

For $m_{1}=b^{2}+c^{2}$ cyclically the m_{2}, m_{3} we have:

$$
\begin{equation*}
\sum\left(b^{2}+c^{2}\right) R_{1}^{2} \geq \frac{2}{3}\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) \tag{54}
\end{equation*}
$$

For $m_{1}=\frac{b c}{b+c}$ cyclically the m_{2}, m_{3}. We take:

$$
\begin{equation*}
\sum \frac{b c}{b+c} R_{1}^{2} \geq \frac{2 a b c}{(a+b)(b+c)(c+a)} \tag{55}
\end{equation*}
$$

For $m_{1}=a^{2} / b c, \quad m_{2}=b^{2} / c a, \quad m_{3}=c^{2} / a b$, we take:

$$
\begin{equation*}
\sum \frac{a^{2}}{b c} R_{!}^{2} \geq \frac{a b c(a b+b c+c a)}{a^{3}+b^{3}+c^{3}} \tag{56}
\end{equation*}
$$

For $m_{1}=r_{!}^{2} / a^{2}, \quad M_{2}=r_{2}^{2} / b^{2}, \quad M_{3}=r_{3}^{2} / C^{2}$ we will have

$$
\begin{equation*}
\sum \frac{R_{!}^{2}}{a^{2}} \geq \frac{a^{4}+b^{4}+c^{4}}{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}} \geq 1 \tag{57}
\end{equation*}
$$

For $m_{1}=\frac{1}{b^{2}+c^{2}}$ cyclically for m_{2}, m_{3}. We will take:

$$
\begin{equation*}
\sum \frac{R_{1}^{2}}{b^{2}+c^{2}} \geq \frac{1}{2.5} \tag{58}
\end{equation*}
$$

For $m_{1}=\left[\frac{r_{b} r_{c}}{r_{a}}\right]^{2}$ and cyclically for m_{2}, m_{3}, we will have:

$$
\begin{equation*}
\sum R_{!}^{2} \cot \frac{A}{2} \geq 2 F \tag{59}
\end{equation*}
$$

We will continue. We will give only the m_{1} and m_{2}, m_{3} will follow cyclically a cause of symmetry.
-For $m_{1}=r_{a}$

$$
\begin{equation*}
\sum r_{a} R_{1}^{2} \geq \frac{12 F^{2}}{r+4 R} \tag{60}
\end{equation*}
$$

-For $m_{1}=\frac{b c}{R_{1}}$

$$
\begin{equation*}
\left[\sum b c\right]\left[\sum \frac{b c}{R^{2}}\right] \geq\left[\sum \frac{a^{3}}{R_{2}^{2} R_{3}^{2}}\right] a b c \tag{61}
\end{equation*}
$$

-For $m_{1}=1 / R_{1}$

$$
\begin{equation*}
\left(\sum R_{1}\right)\left(\sum R_{2} R_{3}\right) \geq \sum a^{2} R_{1} \text { and }\left(\sum R_{1}\right)^{2}\left(\sum R_{2} R_{3}\right) \geq 16 F^{2} \tag{62}
\end{equation*}
$$

-For $m_{1}=p_{2} p_{3}$ where p_{1}, p_{2}, p_{3} are the distances of the point P from their sides.

$$
\begin{equation*}
\left[\sum p_{1}\right]\left[\sum \frac{1}{p_{2}}\right] \geq \frac{4 F^{2}}{\sum p_{2} p_{3} R_{1}^{2}} \tag{63}
\end{equation*}
$$

-For $m_{1}=\frac{1}{R_{2} R_{3}}$

$$
\begin{equation*}
\left[\sum R_{1}^{2}\right]\left[\sum R_{1}\right] \geq \sum a^{2} R_{2} R_{3} \tag{64}
\end{equation*}
$$

-For $m_{1}=\frac{1}{R_{1}^{2}}$

$$
\begin{equation*}
\sum R_{1}^{2} R_{2}^{2} \geq \frac{16}{9} F^{2} \tag{65}
\end{equation*}
$$

-For $m_{1}=\frac{b c}{R_{1}}$

$$
\begin{equation*}
\left(\sum b c R_{1}\right)\left(\sum b c R_{2} R_{3}\right) \geq a b c \frac{64 F^{3}}{\left(\sum R_{1}\right)^{3}} \tag{66}
\end{equation*}
$$

-For $m_{1}=\frac{b c}{R) 2 R_{3}}$

$$
\begin{equation*}
\left(\sum b c R_{1}^{3}\right)\left(\sum a R_{1}\right) \geq a b c\left(\sum a^{3} R_{2} R_{3}\right) \tag{67}
\end{equation*}
$$

-For $m_{1}=\frac{a}{R_{2} R_{3}}$

$$
\begin{equation*}
\left(\sum a R_{1}^{2}\right)\left(\sum a R_{1}\right) \geq a^{2} b^{2} c^{2} \tag{68}
\end{equation*}
$$

-For $m_{1}=R_{1}$

$$
\begin{equation*}
\left(\sum R_{1}\right)\left(\sum R_{1}^{2}\right)\left(\sum R_{1}^{3}\right) \geq a^{2} b^{2} c^{2} \tag{69}
\end{equation*}
$$

-For $m_{1}=\frac{a}{R_{1}}$

$$
\begin{equation*}
\left[\sum a R_{1}\right]\left[\sum \frac{a}{R_{1}}\right] \geq \frac{a^{2} b^{2} c^{2}}{R_{1}^{2} R_{2}^{2} R_{3}^{2}} \tag{70}
\end{equation*}
$$

-For $m_{1}=\sqrt{\frac{a p_{2} p_{3}}{b c p_{1}}}$

$$
\begin{equation*}
\left[\sum \frac{a}{p_{1}}\right]\left[\sum \frac{a}{p_{1}}\right] \geq \frac{8 F^{2} R}{p_{1} p_{2} p_{3}} \tag{71}
\end{equation*}
$$

For the two triangles and a point P for $m_{1}=a^{\prime}, m_{2}=b^{\prime}, m_{3}=c^{\prime}$ we have

$$
\begin{equation*}
\sum a^{\prime} R_{1}^{2} \geq \frac{\sum b^{\prime} c^{\prime} a^{2}}{a^{\prime}+b^{\prime}+c^{\prime}} \tag{72}
\end{equation*}
$$

-For $m_{1}=b^{\prime} c^{\prime}$

$$
\begin{equation*}
\sum b^{\prime} c^{\prime} R_{1}^{2} \geq \frac{a^{\prime} b^{\prime} c^{\prime}\left(\sum a^{\prime} a^{2}\right)}{a^{\prime} b^{\prime}+b^{\prime} c^{\prime}+c^{\prime} a^{\prime}} \tag{73}
\end{equation*}
$$

4.3 Inequalities for a $(n-1)$-simplex.

Let $s^{(n-1)}=A_{1} A_{2} \ldots A_{n}$ be a $(n-1)$-simplex in $E^{(n-2)}$ and Q a point with
barycentrc coordinates $m_{1}, m_{2}, m_{3}, \ldots . m_{n}$, that is $\sum_{i=1}^{n} m_{i}=1$. Leibniz's formula for a point can be written.

$$
\begin{equation*}
\sum_{i=1} n m_{i} R_{i}^{2}=\overrightarrow{P Q}^{2}+\sum_{i \geq j}^{1, n} m_{i} m_{j} a_{i j}^{2} \tag{74}
\end{equation*}
$$

where $\left|\overrightarrow{A_{i} P}\right|=R_{i}$ and $\left|\overrightarrow{A_{i} A_{j}}\right|=a_{i j}$.
We take $P=O$ the circumcenter. From (71), it follows that:

$$
R^{2}=\overrightarrow{O Q}^{2}+\sum_{i \geq j}^{1, n} m_{i} m_{j} a_{i j}^{2} .
$$

Therefore, denoting by $\Delta(Q)$ the power of the point Q, we have:

$$
\begin{equation*}
\Delta(Q)=\sum_{i \geq j}^{1, n} m_{i} m_{j} a_{i j}^{2} \tag{75}
\end{equation*}
$$

and easily we take:

$$
\begin{equation*}
R^{2} \geq \sum_{i \geq 1}^{1, n} m_{i} m_{j} a_{i j}^{2} \tag{76}
\end{equation*}
$$

The equality for $Q=O$.
Let now $P=Q$. From (74) we have

$$
\begin{equation*}
\sum_{i=1}^{n} m_{i} R_{i}^{2}=\sum_{i>j}^{1, n} m_{i} m_{j} a_{i j}^{2} \tag{77}
\end{equation*}
$$

consequently by (75),(77) it follows that:

$$
\begin{equation*}
\Delta(Q)=\sum_{i=1}^{n} m_{i} R_{i}^{2} \tag{78}
\end{equation*}
$$

and from the above and the Gauchy-Schwarz inequality

$$
\sum_{i=1}^{n} m_{i} R_{i}^{2} \geq \frac{\left(\sum m_{i} R_{i}\right)^{2}}{\sum m_{i}}
$$

we take:

$$
\begin{equation*}
R \geq \sum_{i-1}^{n} m_{i} R_{i} \tag{79}
\end{equation*}
$$

From (75) using again the Gauchy-Schwarz's inequality we obtain:

$$
\begin{equation*}
R^{2} \geq \sum_{i>j}^{1, n} m_{i} m_{j} a_{i j}^{2} \geq \frac{\left[\sum_{i>j}^{1, n} a_{i j}\right]^{2}}{\sum_{i>j}^{1, n} m_{i} m_{j}} \tag{a}
\end{equation*}
$$

or,

$$
\begin{equation*}
R^{2}\left[\sum_{i>j}^{1, n} m_{i} m_{j}\right] \geq\left[\sum_{i>j}^{1, n} m_{i} m_{j}\right]^{2} \tag{b}
\end{equation*}
$$

'An interesting inequality can be produced from the above.

$$
1=\left[\sum_{i=1}^{n} m_{i}\right]^{2}=\sum_{i=1}^{n} m_{i}^{2}+2 \sum_{i \geq j}^{1, n} m_{i} m_{j}
$$

or

$$
1 \geq \frac{2}{n-1} \sum_{i \geq j}^{1 . n} m_{i} m_{j}+2 \sum_{i \geq j}^{1 . n} m_{i} m_{j}
$$

The last inequality together with the above (b) gives:

$$
\begin{equation*}
R \sqrt{\frac{n-1}{2 n}} \geq \sum_{i \geq j}^{1, n} m_{i} m_{j} a_{i j} \tag{80}
\end{equation*}
$$

The equality for (79) holds if and only if $P=O$ (the circumcenter). The equality for (80) just when the simplex is a regular one and Q is its circumcenter.
From the inequalities (79) and (80) we can produce remarkable inequalities for a triangle $A B C$, e.g. (79) can be written:

$$
\begin{equation*}
R \geq m_{1} R_{1}+m_{2} R_{2}+m_{3} R_{3} . \tag{81}
\end{equation*}
$$

Suppose that P is the centroid of $A B C$. The inequality (81) will give:

$$
\begin{equation*}
9 R / 2 \geq m_{a}+m_{b}+m_{c} \tag{82}
\end{equation*}
$$

where m_{a}, m_{b}, m_{c} are the medians of $A B C$.
If P coincides with the incenter I, the inequality (81) will give:

$$
\begin{equation*}
2 R s \geq \sum(b+c) t_{a} \tag{83}
\end{equation*}
$$

where t_{a} is the bissectrice of the angle A.
The inequality (80), for $Q=G$ (the centroid), will give:

$$
\begin{equation*}
3 R \sqrt{3} \geq a+b+c \tag{84}
\end{equation*}
$$

the well known inequality.
The inequality (80) for a ($n-1$) simplex and $Q=G$ will give:

$$
\begin{equation*}
R \geq \frac{2 s}{n^{2}} \sqrt{\frac{n-1}{2 n}} \tag{85}
\end{equation*}
$$

where $2 s=\sum_{i>j}^{1, n} a_{i j}$. That is, the maximum sum of the edges, has the regular simplex, from all the inscribed simplices in the $(n-1)$ sphere.
Inequalities (49a) and (79) produce very interesting inequalities.
Let P be an interior point in the triangle $A B C$ and l_{1}, l_{2}, l_{3} its barycentric coordinates with respect to its pedal triangle. We can show:

$$
\begin{equation*}
l_{1} R_{1}+l_{@} R_{2}+l_{3} R_{3} \geq 2 R_{0} \geq 2\left(l_{1} p_{1}+l_{2} p_{2}+l_{3} p_{3}\right) \tag{86}
\end{equation*}
$$

where R_{0} is the circumradius of the pedal triangle $A^{\prime} B^{\prime} C^{\prime}$ of the point P. The inequality (49a) asserts:

$$
\begin{equation*}
l_{1} R_{1} / 2+l_{2} R_{2} / 2+l_{3} R_{3} \geq R_{0} \tag{87}
\end{equation*}
$$

consequently, from the above inequalities we can prove (86).
Another interesting application is the proof of the Jung's theorem see[5] on convex sets. That is, a convex set of diameter D in E^{n} can be in a sphere of radius R so that:

$$
\begin{equation*}
R \leq D\left[\frac{n}{2 n+2}\right]^{\frac{1}{2}} \tag{88}
\end{equation*}
$$

The proof from the formula (77) for $R_{i}=R, a_{i j} \leq D$. Formula (77) for a n-smplex in E^{n} will be

$$
R^{2} \leq \sum_{i>j}^{1, n+1} m_{i} m_{j} D^{2}
$$

but we already found in the page 16 that

$$
\sum_{i>j}^{1, n+1} m_{i} m_{j} \leq \frac{n}{2 n+2}
$$

and from the above we take (88)
We end the paper keeping the feeling, that Leibniz's formula, has a large number of possibilities and only a few have been investigated here.

References.

1. O. Bottema, R. Z. Djordjevic, R. R. Janic, D. S. Mitrinovic, P. M. Vasic, Geometric inequalities, Woltrs-Noordhoff publishing, 1969
2. M. S. Klamkin, Geometric Inequalities via the polar moment of inertia, Math. Magazine, vol. 48, No 1, Ian. 1975, pp 44-46.
3. M. S. Klamkin, symmetric triangle inequalities, Publikacije Elektrotehnickog Fakulteta universita u Beogradu, No 366, 1971, pp 33-44.
4. M. S. Klamkin, triangle inequalities from triangle inequality, Elemente der Mathematik, vol 34-3 1979, pp 49-55.
5. Theory of convex bodies, T. Bonnesen, W. Fenchel, p. 84 B Associates, 1987.
6. Geometry, G. Tsintsifas, Thessaloniki 1970, p.242,249 (in Greek language)
