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Introduction
It is well known from Mechanics, that the polar moment of inertia of a system
of weighted points is minimum about the centroid. This can be expressed
geometrically and very interesting results can be obtained. In fact, the fol-
lowing formula is known.
Let S be a set of points A1, A2, ....An in Ed with masses m1, m2, ...mn respec-
tively and G their centroid. For every point P holds:

m
[ n∑

i=1

mi| ~PAi|2
]

= m2| ~PQ|2 +
1,n∑
i≥j

mimj| ~AiAj|2, (1)

where Q is the centroid defined by:

~OG =

∑n
i mi

~OAi

m
, m =

n∑
i=1

mi 6= 0, mi ∈ R.

Formula (1) was known to Lagrange, but it seems that first has been used
by Leibniz, so we call it, the formula of Leibniz..
The geometric significance of the formula (1) is connected with the use
of the barycentric coordinates. Indeed, suppose that A1, A2, ..An be a (n-
1)simplex in E(n−1) and (m1/m, m2/m, ..mn/m) the barycentric coordinates
of the point Q, that is

~OG =

∑n
i mi

~OAi

m
, m =

n∑
i=1

mi 6= 0, mi ∈ R.

The point Q can be considered as the centroid of the points A1, A2, ..An

with masses m1/m, m2/m, ..mn/m and is easily understood that (1) has geo-
metric significance.
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From the formula (1) we can take the very interesting geometric inequality,
below:

m
[ n∑

i=1

mi| ~PAi|2
]
≥

1,n∑
i≥j

mimj| ~AiAj|2, (2)

The equality holds, if and only if P = Q.
Several Mathematicians have used the inequality (2) in proving geometrc
inequalities, however, I think, that nobody has deeply investegated the large
number of possibilities of the Leibniz’s formula. In this paper we will try
to discribe only a small part of the various and strong possibilities of this
formula.
The paper is divided into four parts. In the first part we give the proof
of the Leibniz’s formula and a generalization. In the second part we will
use it for the proof of some geometric theorems. In the third part we give
some interesting quadritic forms and the last part, includes a large number
of geometric inequalities.
1. Proof of the Leibniz’s fopmula.
It is easily understood that

m ~PQ =
n∑

i=1

mi
~PAi

or ~PQ[m ~PQ−
n∑

i=1

mi
~PAi] = 0

or, m ~PQ
2

= ~PQ
n∑

i=1

mi
~PAi + ~PQ

n∑
i=1

mi
~QAi, because of

n∑
i=1

mi
~QAi = ~0

that is m ~PQ
2

=
n∑

i−1

mi( ~PAi + ~QAi) ~PQ

or m ~PQ
2

=
n∑

i=1

mi( ~PAi + ~QAi)( ~PAi − ~QAi)

or m ~PQ
2

=
n∑

i=1

mi
~PAi

2
−

n∑
i=1

mi
~QAi

2

Or,
n∑

i=1

mi
~PAi

2
= m ~PQ

2
+

n∑
i=1

mi
~QAi

2
. (3)
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Several authors are reffered to (3) as the formula of Leibniz. From (3) we
can easily take (1).
Indeed

1,n∑
i,j

mimj
~AiAj

2
=

1,n∑
i,j

mimj( ~OAi

2
+ ~OAj

2
)− 2 ~OAi

~OAj =

= 2m
n∑

i=1

mi
~OAi

2
− 2

1,n∑
i,j

mimj
~OAi

~OAj

Or
1,n∑
i,j

mimj
~AiAj

2
= 2m

n∑
i=1

mi
~OAi

2
− 2[

n∑
i=1

~OAi]
2. (4)

Formula (4) for O = Q gives:

1,n∑
i≥j

mimj
~AiAj

2
= m

n∑
i=1

mi
~QAi

2
(5)

Consequently from (3) and (5) we have Leibniz’s formula (1), see [6].

An extension of Leibniz’s formula
We consider a second point P ′. The formula (1) can be extended as follows¿

m
[ n∑

i=1

mi
~PAi · ~PAj

]
= m2 ~PG · ~P ′G +

1,n∑
i≥j

mimj
~AiAj

2
(6)

Proof
For every point P, P ′ we have:

m
n∑

i=1

mi
~PAi

2
= m2 ~PQ

2
+

1,n∑
i≥j

mimj
~AiAj

2

m
n∑

i=1

mi
~P ′Ai

2
= m2 ~P ′Q

2
1,n∑
i≥j

mimj
~AiAj

2

We add up the above inequalities and we substitute

~PAi

2
+ ~P ′Ai

2
= ( ~PAi − ~P ′Ai)

2 + 2 ~PAi · ~P ′Ai = ~PP ′2 + 2 ~PAi · ~P ′Ai

3



We will have:

2m
n∑

i=1

mi
~PAi · ~P ′Ai = m2( ~PG

2
+ ~PG′2 − ~PP ′2) + 2

1,n∑
i≥j

mimj
~AiAj

2

and finally, taking into account that

~PG
2
+ ~P ′G

2
− ~PP ′2 = 2 ~PG · ~P ′G,

we have (5).
It is worthwhile to point out here that for a smplex sn−1 = A1A2...An and
a point Q with barycentric coordinates m1, m2, ..mn,

∑n
i=1 mi = 1 and two

points P, P ′ so that 6 PQP ′ ≤ π/2, holds:

n∑
i=1

mi| ~PA|| ~P ′Ai| ≥
1,n∑
i≥j

mimj| ~AiAj|2 (7)

The barycentric coordinates and their geometric significance.
It is useful for the paper to explain clearly the geometric significance of the
barycentric coordinates of a point Q with respect to a triangle A1A2A3.
Let m1, m2, m3 the barycentric coordinates of a point Q, that is:

~OQ = m1
~OA1 + m2

~OA2 + m3
~OA3, and m1 + m2 + m3 = 1

We suppose that:

A′
1 = A1Q ∩ A1A2, A′

2 = A2Q ∩ A3A1, A′
3 = A3Q ∩ A1A2

and F1, F2, F3 the oriented areas of the triangles QA2A3, QA3A1, QA1A2.
The formula (7) can be written:

~OQ = m1
~OA1 + (m2 + m3)

m2
~OA2 + m3

~OA3

m2 + m3

.

From the above follows:

~OA′
1 =

m2
~OA2 + m3

~OA3

m2 + m3

Therefore
A2A′

1

A′
1A3

=
m3

m2

(8)
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and from (8) follows
m3

m2

=
F3

F2

(9)

Let F be the oriented area of the triangle A1A2A3. From the above we
easily see that m1 = F1/F , m2 = F2/F , and m3 = F3/f .
In the n-dimensional Eucledian space, n + 1 indepentant points, are the
vertices of a simplex usually denoted by sn = A1A2....An−1. A point Q with
barycentric coordinates m1, m2, ....mn+1, m1 + m2 + .. ..mn+1 = 1 is:

Q =
n∑

i=1

miAi, or Q = m1A1 +
[ n+1∑

i=2

mi

]∑n+1
i=2 miAi∑n+1

i=2 mi

=

= m1 +
[ n+1∑

i=2

mi

]
Q1 hence

QQ1

A1Q
=

m1

1−m1

Also
QQ1

A1Q1

= m1 =
V (QA2A3....An+1)

V (A1A2....An+1)

By V (W ) is denoted the volume of the body W .
The face opposite the vertex Ai of the n simplex sn = A1A2....An−1 is a

(n− 1)simplex and it is denoted by s
(n−1)
i . It is useful to point out that the

volume of the simplex with vertex Q and opposite face s
(n−1)
i is positive if

the altitudes from the vertices Q and Ai to the opposite face s
(n−1)
i are in the

same direction.

2. Propositions from the Geometry.
(a). Euler’s formula IO2 = R2 − 2Rr.
It is easy to see that the incenter I of a triangle ABC has as barycentric
coordinates,

a/2s, b/2s, c/2s

where a, b, c are the sides of the triangle ABC and 2s = a + b + c
From the Leibniz’s formula follows:

2s(aPA2 + bPB2 + cPC2) = 4s2 · IP 2 + 2sabc

or
aPA2 + bPB2 + cPC2 = 2s · IP 2 + abc. (10)
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Now, setting P = O the circumcenter, we take:

R2 · 2s = 2s · IO2 + abc

and easily
IO2 = R2 − 2Rr

Similarly, we can prove the formulas for the excenters Ia, Ib, Ic that is IaO
2 =

R2 +2Rra etc., as well as the well known formulas about the segments which
join the centroid G the orthocenter H, the incenter I and the circumcenter
O, like

OH2 = 9R2 −
∑

a2

or
18s ·GI2 = 4s(ab + bc + ca)−

∑
a3 − 15abc

and from those,follow very interesting inequalities, like the inequality below

4s(ab + bc + ca) ≥
∑

a3 + 15abc (11)

(b). The area of the pedal triangle.
Let Q be a point of the plane of the triangle ABC and Q1, Q2, Q3 its
projections and q1, q2, q3 its distances from the sides respectively. Denoting
by (LMN) the oriented area, we have:

(Q2QQ3)

(ABC)
=

q2q3

bc

and easily follows:

(Q1Q2Q3) =
(ABC)

4R2
[m2m3a

2 + m3m1b
2 + m1m2c

2]

where m1, m2, m3 are the barycentric coordonates of the point Q.
Formula (1) for P = O (the circumcenter) can be written

R2 = OQ2 + m2m3a
2 + m3m1b

2 + m1m2c
2

The above formulas give the well known formula for the area of the pedal
triangle of the point Q.

(Q1Q2Q3)

(ABC)
=
|∆(Q)|
4R2

(12)
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where by ∆(Q) we denote the power of the point Q.

Quadritic forms via the Leibniz’s formula.

Suppose that s(n) = A0A1A2....An be a n-simplex in En. Formula (2) for
P = A0 can be written.

m
n∑

i=1

mi
~A0Ai

2
≥

1,n∑
i≥j

mimj
~AiAj

2
(13)

we set, mi = xi, | ~AiAj| = aij = aji.
From (10), we take the no negative quadritic form Φ0,

Φ0 =
n∑

i=1

a2
0ix

2
i +

1,n∑
i≥j

(a2
0i + a2

0j − a2
ij)xixj ≥ 0. (14)

From formula (1), setting | ~PAi| = Ri, we take the no negative quadritic
forme Φ.

Φ =
n∑

i=1

R2
i x

2
i +

1,n∑
i≥j

(R2
i + R2

j − a2
IJ)xixj ≥ 0. (15)

We assume now that m =
∑n

i=1 mi = 0, From the formula (4) we take the
remarkable no positive quadritic form Φ1.

Φ1 =
1,n∑
i,j

mimja
2
ij ≤ 0. (16)

Formulae (14),(15) and (16) give interesting inequalities even for the two
dimensional case. We will give some examples working with the formula
(16).
Let m1 = x2 − x3, m2 = x3 − x1, m3 = x1 = x2, xi > 0.
From (16) we have:

∑
(x1 − x2)(x! − x2)a

2 ≥ 0 (Schur′s inequality). (17)

Also from (16) for m1 = x1x2 − x1x3 (cyclicaly), we take.

∑
a2x2

2x
2
3 ≥ x1x2x3

[ ∑
a(x2 + x3 − x1)

]
. (18)
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From (17) we obtain ∑
x2

1 ≥ 2x2x3 cosA. (19)

The inequality (19) leads us to very interesting results, e.g. setting x1 =
1/a, x2 = 1/b, x3 = 1/c we have:

∑
a5 + 2abc · s ≥

∑
a3(b + c) (20)

Now for x1 = a, x2 = b, x3 = c we take:∑
a3 + 3abc ≥

∑
a2(b + c) (21)

for x1 ∼ ax1, x2 ∼ bx2 and x3 ∼ cx3, take

x1x2x3

[ ∑
a3x1

]
+ abc

[ ∑
x2

1x
2
2

]
≥ x1x2x3

[ ∑
a2(bx2 + cx3)

]
(22)

From the formula (2), for the triangle ABC we have

m
∑

m1PA2 ≥
∑

m2m3a
2 (23)

We set P = O, the circumcenter, and mi = xi. Easily we take:∑
x2

i + 2
∑

x1x2 cos 2A ≥ 0 (24)

The well known quadritic form, see[3].

4. Geometric inequalities.

4.1 For the triangle ABC and for P = O (the circumcenter) formula (2)
can be written:

R2m2 ≥
∑

m2m3a
2. (25)

The equality holds for Q = O where Q is the point with barycentic coor-
dinates m1/m, m2/m, m3/m. That is the equality holds, if and only
if

(BOC)

m1

=
(COA)

m2

=
(AOB)

m3

or, after some calculations

a2(b2 + c2 − c2)/m1 = b2(a2 + c2 − b2)/m2 = c2(a2 + b2 − c2)/m3 (26)
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Neuberg-Pedoe’s inequality.
Let ABC, A′B′C ′ be two triangles, F, F ′ their areas, and

P =
∑

a2(a′2 + b′2 − a′2)

We will show the well known Neuberg-Pedoe’s inequality, that is:

P ≥ 16F · F ′ (27)

Indeed, we set m! = a2(b′2 + c′2 − a′2), cyclicaly for m2, m3 in (25) and
immediately follows the Neuberg-Pedoe’s inequality. The equality from (26).

Remark. From this point and for the next inequalities the equality case
is left for the reader, except, possibly for some remarkable problems.
For m1 = a, m2 = b, m3 = c, from (25), we take:

a + b + c ≥ 4F/R (28)

For m1 = a2, m2 + b2, m3 = c2 from (25) we take:

a2 + b2 + c2 ≥ 4F
√

3 (29)

For m1 − b2c2, m2 = c2a2, m3 = a2b2 and always from (25), we take:∑
b2c2 ≥ 16F 2 (30)

For m1 = a4, m2 = b4, m3 = c2 it follows that:

a4 + b4 + c4 ≥ 16F 2 (31)

For m1 = m2 = m3 = 1 it follows the well known inequality

9R2 ≥ a2 + b2 + c2 (32)

For two triangles ABC, A′B′C ′ and for m1 = a2a′2, m2 = b2b′2, m3 =
c2c′2, we have: ∑

a2a′2 ≥ 16FF ′ (33)

We continue with the two triangles.
For m1 = a2/r′br

′
c symmetrically m2, m3 and ra, rb, rc, r′a, r

′
b, r

′
c the exradii.

We take: ∑ a2

r′br
′
c

≥ 4F

F ′ (34)
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For m1 = a2r′a and symmetrically for the others m∑
a2r′a ≥ 4Fs′ (35)

For m1 = a/a′ etc. ∑ a

a′
≥ 231/4

√
RR′

F 3/4

F ′1/4
(36)

For m1 = a′

b′c′ etc.

9RR′

4F ′ ≥ 1√
3

[ ∑
a/a′

]
(37)

For

m1 =
a2b′c′

(a′ + b′)(a′ + c′)
,

symmetrically for m2, m3∑
a2b′c′(b′ + c′) ≥ 2531/2FF ′R′ (38)

For m1 = ax, m2 = by, m3 = cz it follows that:[
ax + by + cz

4F

]2

≥
∑ yz

bc
(39)

For m1 = a2x, m2 = b2y, m3 = c2z, we take:[
a2x + b2y + c2z

4F

]
≥ xy + yz + zx (40)

For m1 = x, m2 = y, m3 = z we have:

R2(x + y + z)2 ≥ xyc2 + yza2 + zxb2 (41)

M. Klamkin proved (39),(40),(41) in [3]. For m1 = 1
bc

cyclically for m2, m3

we have: ∑ 1

ab
≥ 1

R2
(42)

We suppose that m1 + m2 + m3 = 0, from (16) we have:∑
m2m3a

2 ≤ 0

10



let now m1 = (b − c)/ra cyclically for m2, m3. It is easy to see
∑ b−c

ra
= 0.

consequently, it follows

∑ (a− b)(a− c)

rbrc

a2 ≥ 0 (43)

For m1 = ra/bc, cyclically for m2, m3. We take:[
R

r
− 1

2

]2

≥
∑ rbrc

bc
(44)

For m1 = rb + rc, m2 = rc + ra, m3 = ra + rb, we will have:

R(r + 4R)2

2(2R− r)
≥ s2 (45)

this is a new r, R, s inequality. For m1 = (rb + rc)/ra, cyclically for m2, m3,
it follows that:

s2 ≥ 10R2 +
3

2
Rr − 2

R3

r
. (46)

Another new r, R, s inequality.

4.2 The inequalities which follow are refered to the distances of a point P
from the vertices of the triangle ABC
The formula (2) for the triangle ABC can be written.

m
∑
1

R2
1 ≥

∑
m2m3a

2 (47)

where R1 = AP, R2 = BP, R3 = CP , and m1/m, m2/m, m3/m the
barycentri coordinates of the point Q.

For m1 = a, m2 = b, m3 = c we take.

aR2
1 + bR2

2 + cR2
3 ≥ abc (48)

a well known inequality, see [4].
The equality holds if and only if P coincides with the point I (the incenter).
M.S. Klamkin proved the inequality

aR2R3 + bR3R1 + cR3R1 ≥ abc (49)
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using an inversion (P, k2) see [4].
It is possible to obtain (49) directly from (47), setting m1 = a/R1, m2 =
b/R2, m3 = c/R3, or m1 = aR2R3 etc.
Another nice inequality can be produced from (49) the following.

R1

a
+

R2

b
+

R3

c
≥
√

3

A remarkable notice here is that the three last inequalities can be proved
using identities of the complex plane eg. for (49)∑

(z1 − z2)(z − z1)(z − z2) = (z1 − z2)(z2 − z3)(z3 − z1)

etc.
We denote by l1, l@, l3 the barycentric coordinates of the point P and by
ρ1, ρ2, ρ3 the circumradii of the triangles BPC, CPA, APB, (49) can be
written.

l1ρ1 + l2ρ2 + l3ρ3 ≥ R (49a)

For m1 = a2, m2 = b2, m3 = c2, we will have:∑
(b + c)R2

1 ≥ (a + b)(b + c)(c + a)/4 (50)

For m1 = b2c2 cyclically for the others m, we take:∑
b2c2R2

! ≥ a2b2c2 (51)

For m1 = a(b + c) cyclically the m2, m3, we take:

∑
a(b + c)R2

1 ≥
2abc

3
(a + b + c) (52)

For m1 = bc, m2 = ca, m3 = ab, it follows that:∑
bcR2

1 ≥ abc · 2s/3 (53)

For m1 = b2 + c2 cyclically the m2, m3 we have:∑
(b2 + c2)R2

1 ≥
2

3
(a2b2 + b2c2 + c2a2) (54)

For m1 = bc
b+c

cyclically the m2, m3. We take:

∑ bc

b + c
R2

1 ≥
2abc

(a + b)(b + c)(c + a)
(55)
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For m1 = a2/bc, m2 = b2/ca, m3 = c2/ab, we take:

∑ a2

bc
R2

! ≥
abc(ab + bc + ca)

a3 + b3 + c3
(56)

For m1 = r2
! /a

2, M2 = r2
2/b

2, M3 = r2
3/C

2 we will have

∑ R2
!

a2
≥ a4 + b4 + c4

a2b2 + b2c2 + c2a2
≥ 1 (57)

For m1 = 1
b2+c2

cyclically for m2, m3. We will take:

∑ R2
1

b2 + c2
≥ 1

2.5
(58)

For m1 = [ rbrc

ra
]2 and cyclically for m2, m3, we will have:

∑
R2

! cot
A

2
≥ 2F (59)

We will continue. We will give only the m1 and m2, m3 will follow cyclically
a cause of symmetry.
-For m1 = ra ∑

raR
2
1 ≥

12F 2

r + 4R
(60)

-For m1 = bc
R1 [ ∑

bc
][ ∑ bc

R2

]
≥

[ ∑ a3

R2
2R

2
3

]
abc (61)

-For m1 = 1/R1

(
∑

R1)(
∑

R2R3) ≥
∑

a2R1 and (
∑

R1)
2(

∑
R2R3) ≥ 16F 2 (62)

-For m1 = p2p3 where p1, p2, p3 are the distances of the point P from their
sides. [ ∑

p1

][ ∑ 1

p2

]
≥ 4F 2∑

p2p3R2
1

(63)

-For m1 = 1
R2R3 [ ∑

R2
1

][ ∑
R1

]
≥

∑
a2R2R3 (64)
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-For m1 = 1
R2

1 ∑
R2

1R
2
2 ≥

16

9
F 2 (65)

-For m1 = bc
R1

(
∑

bcR1)(
∑

bcR2R3) ≥ abc
64F 3

(
∑

R1)3
(66)

-For m1 = bc
R)2R3

(
∑

bcR3
1)(

∑
aR1) ≥ abc(

∑
a3R2R3) (67)

-For m1 = a
R2R3

(
∑

aR2
1)(

∑
aR1) ≥ a2b2c2 (68)

-For m1 = R1

(
∑

R1)(
∑

R2
1)(

∑
R3

1) ≥ a2b2c2 (69)

-For m1 = a
R1 [ ∑

aR1

][ ∑ a

R1

]
≥ a2b2c2

R2
1R

2
2R

2
3

(70)

-For m1 =
√

ap2p3

bcp1 [ ∑ a

p1

][ ∑ a

p1

]
≥ 8F 2R

p1p2p3

(71)

For the two triangles and a point P for m1 = a′, m2 = b′, m3 = c′ we have

∑
a′R2

1 ≥
∑

b′c′a2

a′ + b′ + c′
(72)

-For m1 = b′c′ ∑
b′c′R2

1 ≥
a′b′c′(

∑
a′a2)

a′b′ + b′c′ + c′a′
(73)

4.3 Inequalities for a (n− 1)-simplex.

Let s(n−1) = A1A2....An be a (n − 1)-simplex in E(n−2) and Q a point with
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barycentrc coordinates m1, m2, m3, ....mn, that is
∑n

i=1 mi = 1. Leibniz’s for-
mula for a point can be written.

∑
i=1

nmiR
2
i = ~PQ

2
+

1,n∑
i≥j

mimja
2
ij (74)

where | ~AiP | = Ri and | ~AiAj| = aij.
We take P = O the circumcenter. From (71), it follows that:

R2 = ~OQ
2
+

1,n∑
i≥j

mimja
2
ij.

Therefore, denoting by ∆(Q) the power of the point Q, we have:

∆(Q) =
1,n∑
i≥j

mimja
2
ij (75)

and easily we take:

R2 ≥
1,n∑
i≥1

mimja
2
ij. (76)

The equality for Q = O.
Let now P = Q. From (74) we have

n∑
i=1

miR
2
i =

1,n∑
i>j

mimja
2
ij (77)

consequently by (75),(77) it follows that:

∆(Q) =
n∑

i=1

miR
2
i (78)

and from the above and the Gauchy-Schwarz inequality

n∑
i=1

miR
2
i ≥

(
∑

miRi)
2∑

mi

we take:

R ≥
n∑

i−1

miRi (79)
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From (75) using again the Gauchy-Schwarz’s inequality we obtain:

R2 ≥
1,n∑
i>j

mimja
2
ij ≥

[ ∑1,n
i>j aij

]2

∑1,n
i>j mimj

(a)

or,

R2
[ 1,n∑

i>j

mimj

]
≥

[ 1,n∑
i>j

mimj

]2
(b)

‘An interesting inequality can be produced from the above.

1 = [
n∑

i=1

mi]
2 =

n∑
i=1

m2
i + 2

1,n∑
i≥j

mimj

or

1 ≥ 2

n− 1

1.n∑
i≥j

mimj + 2
1.n∑
i≥j

mimj

The last inequality together with the above (b) gives:

R

√
n− 1

2n
≥

1,n∑
i≥j

mimjaij. (80)

The equality for (79) holds if and only if P = O (the circumcenter). The
equality for (80) just when the simplex is a regular one and Q is its circum-
center.
From the inequalities (79) and (80) we can produce remarkable inequalities
for a triangle ABC, e.g. (79) can be written:

R ≥ m1R1 + m2R2 + m3R3. (81)

Suppose that P is the centroid of ABC. The inequality (81) will give:

9R/2 ≥ ma + mb + mc. (82)

where ma, mb, mc are the medians of ABC.
If P coincides with the incenter I, the inequality (81) will give:

2Rs ≥
∑

(b + c)ta (83)
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where ta is the bissectrice of the angle A.
The inequality (80), for Q = G (the centroid), will give:

3R
√

3 ≥ a + b + c, (84)

the well known inequality.
The inequality (80) for a (n− 1)simplex and Q = G will give:

R ≥ 2s

n2

√
n− 1

2n
(85)

where 2s =
∑1,n

i>j aij. That is, the maximum sum of the edges, has the regular
simplex, from all the inscribed simplices in the (n− 1)sphere.
Inequalities (49a) and (79) produce very interesting inequalities.
Let P be an interior point in the triangle ABC and l1, l2, l3 its barycentric
coordinates with respect to its pedal triangle. We can show:

l1R1 + l@R2 + l3R3 ≥ 2R0 ≥ 2(l1p1 + l2p2 + l3p3) (86)

where R0 is the circumradius of the pedal triangle A′B′C ′ of the point P .
The inequality (49a) asserts:

l1R1/2 + l2R2/2 + l3R3 ≥ R0 (87)

consequently, from the above inequalities we can prove (86).
Another interesting application is the proof of the Jung’s theorem see[5] on
convex sets. That is, a convex set of diameter D in En can be in a sphere of
radius R so that:

R ≤ D

[
n

2n + 2

] 1
2

(88)

The proof from the formula (77) for Ri = R, aij ≤ D. Formula (77) for a
n-smplex in En will be

R2 ≤
1,n+1∑
i>j

mimjD
2

but we already found in the page 16 that

1,n+1∑
i>j

mimj ≤
n

2n + 2

17



and from the above we take (88)
We end the paper keeping the feeling, that Leibniz’s formula, has a large
number of possibilities and only a few have been investigated here.
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