
The perimeters of the cevian and pedal

triangle.

George Tsintsifas, Thessaloniki, Greece.

We start with a triangle ABC and an interior point M . The cevians
determined by M are the line segments AA1,BB1,CC1 through M that
join a vertex to a point on the opposite side (with A1 on BC, B1, on CA

and C1 on AB). We call C(M) = △A1B1C1,the cevian triangle for M.
The point M also determines a pedal triangle P (M) = △A2B2C2 whose
vertices are the feets A2,B2,C2 of the perpendiculars dropped from M to the
sides BC,CA and AB respectively. Problem E2716* in the American Math-

ematical Monthly [1] called for a proof that

perimeterC(M) ≥ perimeterP (M).

C.S. Gardner submitted the only solution; his argument was based on ad

hoc reasoning in several cases. Some years ago I found a shorter and more
analytical proof based on a lemma that seems interesting in its own right.
Lemma

Let ABC be a triangle and φ, ω, θ three positive convex angles so that
φ + ω + θ = 2π and M is a point of the plane of the triangle ABC. We
denote

F (M) = AM.sinφ + BM.sinω + CM.sinθ

case (a). For φ ≥ A ,ω ≥ B, θ ≥ C the minimum of F(M) is taken for an
internal to ABC point P so that

6 BPC = φ, 6 CPA = ω and 6 APB = θ
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Therefore we will have:
F (M) ≥ F (P ) (1)

case (b). For φ ≤ A , it holds:

AM.sinφ + BM.sinω + CM.sinθ ≥ AB.sinω + AC.sinθ (2)

Proof
We are refered in an orthogonal Cartesian system O.xyz, and let:
A = (x1, y1), B = (x2, y2), C = (x3, y3), M = (x, y).
We will have:

F (M) = F (x, y) =
i=3
∑

i=1

sinφ
√

(x − xi)2 + (y − yi)2

cyclic relative φ, ω, θ.

The function Fx,y is positive determined in the triangle ABC, it is continue
and has derivates except the vertices A,B,C. We will find the min. of F(x,y)
in ABC-A-B-C and we will examine it separetely in the vertices A,B,C. De-
noting by e1, e2 the unit vectors of the Cartesian systemO.xyz, we see that:

gradF (x, y) =
θF

θx
.e1 +

θF

θy
.e2 =

i=3
∑

i=1

sinφ.
~r1

r1

cyclic relative φ, ω, θ and ~r1 = ~AM, ~r2 = ~BM, ~r3 = ~CM . Let now
~r1

r1

= a0,
~r2

r2

= b0,
~r3

r3

= c0. The minimum for F(x,y) is given by:

a0sinφ + b0sinω + c0sinθ = 0 (3)

We succesively multiply the relation (1) by a0, b0, c0. Denoting by
t1 = b0.c0, t2 = c0.a0 and t3 = a0.b0 we find the system.

sinφ + t2sinω + t3sinθ = 0

t1sinθ + sinω + t3sinφ = 0

t1sinω + t2sinφ + sinθ = 0

The solution of the above system is easy and we take:

t1 = b0.c0 = cos(ω + θ)
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That is for the minimum F(x,y) the point M must coincide to a point P, so
that

6 BPC = 2π − (ω + θ) = φ.

Similarly we find that:6 CPA = ω, 6 APB = θ.

We will examine now the case M=A, that is F (A) = bsinθ + csinω Let P
the above determined point. We consider the circle BPC of radius R’ and
we denote by A’ the intersection of the line AP and the circle BPC.
Ptolemy’s inequality to the quadrilateral ABA’C gives:

c.CA′ + b.BA′ ≥ (PA + PA′).BC = PA.BC + PA′.BC

or

2R′.c.sinω + 2R′.b.sinθ ≥ AP.BC + PA”′.BC

From Ptolemy’s theorem, we have:

PA′.BC = BP.CA′ + CP.BA′

. From the above and sinus theorem finaly we take F (A) ≥ F (P ). Similarly
F (B), F (C) ≥ FP .
The proof of the inequality (2) is elementary but very interesing. Let M be a
point of the plane of the triangle ABC. We transform the triangle AMB by
a rotation of center A, angle π − A and ratio sinω

sinθ
.

The triangle AMB takes the place AM’A’ where C,A,A’ are in the line CA
with the order C-A-A’ (se fig1.).We will have:

M ′A′ = BM.
sinω

sinθ
(4)

Also in the triangle MAM’ is.

AM ′

AM
=

sinω

sinθ
, 6 MAM ′ = π − A < π − φ.

We construct the triangle PQS so that QP=AM’,QS=AM and 6 PQS = π−φ.
Let 6 QPS = θ′, 6 QSP = ω′. We have:

θ′ + ω′ = φ
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Figure 1:

sinω′

sinθ′
=

sinω

sinθ
.

From the above equations we find

sin(φ − θ′).sinθ + sinθ′.sin(φ + θ) = 0

and after some manipulations we find:

π − θ = θ′ and π − ω = ω′

The triangles MAM’, SQP have: AM’=QP, AM=QS and 6 MAM ′ = π−A <

π − φ = 6 PQS. Therefore

MM ′ < PS =
QS.sinφ

sinθ
=

AM.sinφ

sinθ

From (4) and (5) follows:

BM.
sinω

sinθ
+ AM.

sinφ

sinθ
> A′M ′ + M ′M

But,
A′M ′ + M ′M + CM > AA′ + AC
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From the above two inequalities we take.

AM.
sinφ

sinθ
+ BM.

sinω

sinθ
+ CM > AB

sinω

sinθ
+ AC.

Theorem
For every triangle ABC and an interior point M, the perimeter of the cevian
triangle is bigger or equal to the perimeter of its pedal triangle.
Proof
Let A1B1C1 the cevian triangle and A2B2C2 the pedal triangle of the point
M, see fig.2). It is well known that the circles p1 : B1AC1, p2 : C1BA1, p3 :
A1CB1 have a common point P (Miquel’s point, see [2]). We denote R1, R2, R3

the radii of p1, p2, p3 respectively. We easily see that:

perimeterC(M) =
∑

B1C1 =
∑

2R1 sin A (6)

perimeterP (M) =
∑

B2C2 =
∑

AM (7)

The meaning of the sums are easily understood.
case 1. We suppose that 6 B1PC1 = π−A > 6 B1A1C1, 6 C1PA1 = π−B >
6 C1B1A1, 6 A1PB1 = π − C > 6 A1C1B1, that is P is an interior point of
the triangle A1B1C1.

We have:

PA + PA1 ≥ AM + MA1

or
2R1 + PA1 ≥ AM + MA1

and we see that:

∑

2R1 sin A +
∑

PA1 sin A ≥
∑

AM sin A +
∑

MA1 sin A (8)

In this point we use the lemma for the triangle A1B1C1. We know that :

6 B1PC1 = π − A, 6 C1PA1 = π − B, 6 A1PB1 = π − C

.
Therefore:

∑

MA1 sin A ≥
∑

PA1 sin A (9)

5



A

B

C

P
M

A1A2

B1
B2C1

C2

p1

p2

p3

Figure 2:

From (8), (9) we see that:
∑

2R1 sin A ≥
∑

AM sin A

that is from (6),(7) we conclude

perimeterC(M) ≥ perimeterP (M)

.
The equality case for P=M, that is C(M)=P(M) or M=H the orthocenter.
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case 2..We suppose now that 6 B1PC1 = π − A < 6 B1A1C!. In this case is
A + 6 B1A1C1 > π, therefore the point A1 is an interior point of the circle
B1AC1.
The following inequalities are obvius.

2R1 ≥ AM + MA1 (10)

2R2 + A1B1 ≥ A1B + A1B1 ≥ BM + MB1 (11)

2R3 + A1C1 ≥ A1C + A1C1 ≥ CM + MC1 (12)

We multiplay the above respectively by sinA, sinB, sinC. Adding, from the
lemma case (b)., we find again that perimeterC(M) ≥ perimeterP (M).

Remarks

The question which arises, after the solution of the above problem is about
the relation of the area between C(M) and P(M). The remark (1) gives the
answer; that is, there are points M so that the AreaC(M) is bigger than the
AreaP(M) and for other points holds the converse. Probably, it would be of
some interest to determine the points M so that: AreaC(M)=AreaP(M).

1. Well known inequalities about the area of C(M) and P(M) are:

AreaC(M) ≤
1

4
AreaABC

see [3].

AreaP (M) ≤
1

4
AreaABC

see [4].
Also we obviously have

AreaC(O) ≤ AreaP (O) =
1

4
AreaABC

1

4
AreaABC = AreaC(G) ≥ AreaP (G)

where O and G are the circumcenter and the centroid of ABC.
2. Our lemma can be considered as an extension of Fermat-Steiner the-
orem , see [2], about the minimum of the sum AP+BP+CP. Indeed for
φ = ω = θ = 2

3
π we have the Fermat-Steiner point.
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