Van den Berg's Theorem

G. A. Tsintsifas Theassaloniki Greece GR

Let $Q(z) = z^3 + a_1 z^2 + a_2 z + a_3 = 0$ be a cybic in C and z_1 , z_2 , z_3 the roots, denoted in the plane by the points A,B,C. The Steiner ellipse in the triangle ABC is denoted by E and F_1 , F_2 the foci. Van den Berg's **theorem** asserts that the roots of the derivate Q'(z) are the complex numbers defined in C by the points F_1 and F_2 .

I found in my notes the above nice theorem whithout any information about the source. I succed the following interesting proof, but we need a short introduction about the Sreiner ellipse and the affine transformation see(1) and (2).

The Steiner's ellipse E is inscribed in a triangle ABC such that is tangent to the sides in their midpoints. The center of E is the centroid G of the triangle and the midpoints of AG,BG,CG are in E. From the Geometric transformations theory it is well known that an affinity transforms a triangle $A_0B_0C_0$ to another triangle ABC, the parallelism, the ratio of the parallel streight line segments and the ratio of the areas are preserved.

Proof.

Let $A_0B_0C_0$) the equilateral triangle in C so that the vertices A_0 , B_0 , C_0 are represented by the complex numbers:

2,
$$2(\cos 120^0 + i \sin 120^0)$$
, $2(\cos 240^0 + i \sin 240^0)$

respectively.

We consider the affinity T so that:

$$x' = x$$
, and $y' = ky$ where $0 < k \le 1$

We can choose $A_0B_0C_0$ and k so that the triangle $A_0B_0C_0$ will be trasformed by T to the triangle ABC. Therefore we will have:

$$z_1 = 2$$

$$z_2 = 2(\cos 120^0 + ik \sin 120^0)$$
$$z_3 = 2(\cos 240^0 + ik \sin 240^0)$$

From the above we calculate that:

$$z_1 z_2 + z_2 z_3 + z_3 z_1 = -3 + 3k^2 (1)$$

The center of the Cartesian system (also the center of the inscribed circle in $A_0B_0C_0$ and in the Steiner ellipse E of the triangle ABC) coincides with the barycenter of both the triangles. Hence,

$$z_1 + z_2 + z_3 = 0 (2)$$

From (1) and (2) follows that

$$Q(z) = z^3 + 3(k^2 - 1)z + a_3 = 0.$$

$$Q'(z) = 3z^2 + 3(k^2 - 1) = 0.$$

The roots of Q'(z) are $\omega_1 = \sqrt{1-k^2}$ and $\omega_2 = -\sqrt{1-k^2}$. The circle $x^2 + y^2 = 1$ transformed by T to the ellipse

$$E: x^2 + \frac{y^2}{k^2} = 1$$

with semiaxes a=1 and b=k, therefore the foci are $\sqrt{1-k^2}$ and $-\sqrt{1-k^2}$.

References

- 1. G. D. Chakerian and L. H. Lange, Geometric Extremum Problems, Mathematics Magazine, vol 44 number 2, pp 57-69.
- 2. Geometric Transformations, P. S. Modenov, A. S. Parkhomenko, Academic Press.